首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Zinc oxide (ZnO) and Er-doped zinc oxide (ZnO:Er) thin films were formed by pulsed laser deposition, and characterized by photoluminescence (PL) and X-ray diffraction (XRD) in order to clarify the 1.54 μm emission mechanism in the ZnO:Er films. Er ions were excited indirectly by the 325 nm line of a He-Cd laser, and the comparison of the ultraviolet to infrared PL data of ZnO and ZnO:Er films showed that the 1.54 μm emission of Er3+ in ZnO:Er film appears at the expense of the band edge emission and the defect emission of ZnO. The crystallinity of the films was varied with the substrate temperature and post-annealing, and it was found that the intensity of the 1.54 μm emission is strongly related with the crystallinity of the films. There are three processes leading to the 1.54 μm emission; absorption of excitation energy by the ZnO host, energy transfer from ZnO to Er ions, and radiative relaxation inside Er ions, and it is suggested that the crystallinity plays an important role in the first two processes.  相似文献   

2.
In this work, silicon nanocrystals (Si-nc) embedded in a silicon-rich silicon oxide (SRSO) matrix doped with Er3+ ions for different erbium and silicon concentrations have been deposited by electron-cyclotron resonance plasma-enhanced chemical-vapor-deposition (ECR-PECVD) technique. Their optical properties have been investigated by photoluminescence (PL) and reflectance spectroscopy.Room temperature emission bands centered at ∼1.54 and at 0.75 μm have been obtained for all samples. The most intense emission band at ∼1.54 μm was obtained for samples with concentrations of 0.45% and 39% for erbium and silicon, respectively. Moreover, it has been found that the broad emission band centered at ∼0.75 μm for all samples shows a very strong interference pattern related to the a specific sample structure and a high sample quality.  相似文献   

3.
Photoluminescence (PL) properties of Er-doped β-FeSi2 (β-FeSi2:Er) and Er-doped Si (Si:Er) grown by ion implantation were investigated. In PL measurements at 4.2 K, the β-FeSi2:Er showed the 1.54 μm PL due to the intra-4f shell transition of 4I13/24I15/2 in Er3+ ions without a defect-related PL observed in Si:Er. In the dependence of the PL intensity on excitation photon flux density, the obtained optical excitation cross-section σ in β-FeSi2:Er (σ=7×10−17 cm2) is smaller than that in Si:Er (σ=1×10-15 cm2). In the time-resolved PL and the temperature dependence of the PL intensity, the 1.54 μm PL in β-FeSi2:Er showed a longer lifetime and larger activation energies for non-radiative recombination (NR) processes than Si:Er. These results revealed that NR centers induced by ion implantation damage were suppressed in β-FeSi2:Er, but the energy back transfer from Er3+ to β-FeSi2 was larger than Si:Er.  相似文献   

4.
采用等离子体增强化学汽相沉积技术生长不同氧含量的氢化非晶氧化硅薄膜(a-SiOx∶H),离子注入铒及退火后在室温观察到很强的光致发光.当材料中氧硅含量比约为1和 1.76时,分别对应77K和室温测量时最强的1.54μm光致发光.从15到250K的变温实验显示 出三个不同的强度与温度变化关系,表明氢化非晶氧化硅中铒离子的能量激发和发光是一个 复杂的过程.提出氢化非晶氧化硅薄膜中发光铒离子来自于富氧区,并对实验现象进行了解 释.氢化非晶氧化硅中铒发光的温度淬灭效应很弱.从15到250K,光致发光强度减弱约1/2. 关键词: 铒 光致发光 氧含量  相似文献   

5.
Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 °C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 μm light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 μm reached maximum at 800 °C and decreased dramatically at 1000 °C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED.  相似文献   

6.
磁控溅射淀积掺Er富Si氧化硅膜中Er3+ 1.54μm光致发光   总被引:6,自引:1,他引:5       下载免费PDF全文
用磁控溅射淀积不同富Si程度的掺Er富Si氧化硅薄膜.室温下测量其光致发光谱,观察到各谱中都含有1.54和1.38μm两个发光峰,其中1.54和1.38μm的光致发光峰分别来自Er3+和氧化硅中某种缺陷.系统研究了Er3+1.54μm光致发光峰强度对富Si程度及退火温度的依赖关系.还发现1.54μm发光峰强度与1.38μm发光峰强度相互关联,对此进行了讨论 关键词: Er 富Si氧化硅 光致发光 纳米硅  相似文献   

7.
The ground state absorption (GSA), photoluminescence (PL) and photoluminescence excitation (PLE) spectra for Er(1.0 at%):YAP and Er(0.5 at%):LSO were measured at room temperature. Based on the GSA spectra, the radiative transition rates and luminescence branch ratios of erbium ions were determined by the Judd-Ofelt (J-O) method. In the range of 1400-1700 nm Er(1.0 at%):YAP has intense absorption at 1509 nm (0.96×10−20 cm2), which is almost two times larger than the peak absorption of Er(0.5 at%):LSO. From the PL and PLE spectra, four intense emission bands around 850 nm (4S3/24I13/2), 980 nm (4I11/24I15/2), 1230 nm (4S3/24I11/2) and 1520 nm (4I13/24I15/2) were observed. The stimulated emission cross-sections of the four bands were calculated by the Fuchtbauer-Ladenberg (F-L) equation. The results suggest that Er(1.0 at%):YAP has potential to realize laser oscillation at 858 nm because of the relatively large simulated emission cross-section (1.76×10−20 cm2). The temperature dependences of the PL spectra for the two crystals were also investigated in the range of 290-12 K. The ∼1520 nm emission presents continuous increase with temperature, while the emissions around 850, 1230 and 980 nm firstly increase with temperature, then reach their own largest values at the transition temperatures (about 100 K), and finally decrease with temperature. These results were well interpreted by the temperature dependence of multi-phonon process.  相似文献   

8.
EDX and infrared photoluminescence (IR PL) analyses performed on erbium-doped porous silicon waveguides (PSWG) were studied using different doping conditions. Both parameters of the cathodisation electrochemical method used for Er incorporation and parameters of thermal treatments required for Er optical activation were taken into consideration. Firstly, by varying the current density and the time of cathodisation, we have shown that a current density of 0.1 mA/cm2 for 10 min allows homogeneous Er doping to be achieved throughout the depth of the guiding layer. Then, the PL intensity at 1.53 μm was studied as a function of the oxidation time at 900 °C and Er diffusion temperature for 60 min. Increasing the oxidation time up to 1 h allows PL to be enhanced due to active Si-O-Er complex formation whereas an oxidation time of 2 h induces a decrease in PL because of Er segregation. Moreover, an increase in the diffusion temperature induces an optimal distribution of optically active Si-Er-O complexes inside the crystallites. When the temperature is too high, a PSWG densification and Er segregation occurs inducing a decrease in PL due to energy transfer phenomena.  相似文献   

9.
Alternately Er doped Si-rich Al2O3 (Er:SRA) multilayer film, consisting of alternate Er-Si-codoped Al2O3 (Er:Si:Al2O3) and Si-doped Al2O3 (Si:Al2O3) sublayers, has been synthesized by co-sputtering from separated Er, Si, and Al2O3 targets. The dependence of Er3+ related photoluminescence (PL) properties on annealing temperatures over 700-1100 °C was studied. The maximum intensity of Er3+ PL, about 10 times higher than that of the monolayer film, was obtained from the multilayer film annealed at 950 °C. The enhancement of Er3+ PL intensity is attributed to the energy transfer from the silicon nanocrystals in the Si:Al2O3 sublayers to the neighboring Er3+ ions in the Er:Si:Al2O3 sublayers. The PL intensity exhibits a nonmonotonic temperature dependence: with increasing temperature, the integrated intensity almost remains constant from 14 to 50 K, then reaches maximum at 225 K, and slightly increases again at higher temperatures. Meanwhile, the PL integrated intensity at room temperature is about 30% higher than that at 14 K.  相似文献   

10.
Photoluminescence excitation (PLE) spectra for the emission wavelength 1.54 μm were studied for erbium-doped xerogels embedded in artificial opals and porous anodic alumina films. Opals were chosen with photonic stop-band in green spectral range, where excitation of 1.54 μm occurs most efficiently. In comparison to the structure erbium-doped titania xerogel/porous anodic alumina/silicon the photoluminescence excitation spectra for 1.54 μm emission wavelength significantly changes for the same xerogels embedded in artificial opals. Enhancement of erbium-related 1.54 μm emission was observed from the structure Fe2O3 xerogel/porous anodic alumina fabricated on silicon, having some incompletely anodized aluminium, under excitation with either the lasing source at 532 nm or xenon lamp. Evident difference in PLE spectra for erbium doped TiO2 and Fe2O3 xerogels in porous anodic alumina is observed.  相似文献   

11.
We report on the fabrication and performance of Si-based light sources. The devices consist of MOS structures with erbium (Er)-doped silicon rich oxide (SRO) film as gate dielectric. The devices exhibit electroluminescence (EL) at 1.54 μm at room temperature with a 0.2% external quantum efficiency. These devices show a high stability due to the silicon excess in the film. The Er-doped SRO films have been introduced in a Si/SiO2 Fabry-Perot Microcavity in order to increase the spontaneous emission rate, the extraction efficiency and the spectral purity at the resonant wavelength. The active medium in the cavity has been electrically pumped and the conduction mechanisms have been analyzed. The EL spectra have also been acquired and compared with photoluminescence (PL) ones for the same resonant cavity light-emitting device (RCLED). The EL and PL peak intensities of the on-axis emission at the resonant wavelength are over 20 times above that of the similar Er-doped SRO film without a cavity. The Si-based RCLEDs exhibit different quality factors, ranging from 60 to 170. The spectra shape and intensity have been correlated with the quality factor. A high directionality of the emitted light, due to the presence of the resonant cavity, has also been observed: the overall luminescence is confined within 10° cone from the sample normal.  相似文献   

12.
SnO2 thin films undoped and doped with antimony (Sb), erbium (Er) and Si nanocrystals (Si-nc) have been grown on silicon (Si) substrate using sol-gel method. Room-temperature photoluminescence (PL) measurement of undoped SnO2, under excitation at 280 nm, shows only one broad emission at 395 nm, which is related to oxygen vacancies. The PL of Er3+ ions was found to be enhanced after doping SnO2 with Sb and Si-nc. The excitation process of Er is studied and discussed. The calculation of cross-section suggests a sensitisation of Er PL by Si-nc.  相似文献   

13.
Er-Si-O crystalline compounds, which exhibit superlattice structures and sharp and strong Er-related 1.54 μm photoluminescence (PL) spectra at room temperature have been formed by self-assembling growth mechanism. Oxidation of the starting materials which have Si and Er at an atomic ratio of 2:1 are prepared and then oxidation and succeeding high-temperature annealing in Ar above 1250 °C cause a self-assembled superlattice-structured Er-Si-O crystalline compounds. The control of the ratio of Si and Er, as well as the following oxidation and annealing processes, is found to be sensitive to the crystalline properties, PL spectra and electrical properties. In this study, Er-Si-O crystalline thin films are formed on Si substrates by sol-gel and MOMBE methods, and their crystalline properties such as crystalline orientation and concentration ratio of Er, Si and O are investigated. Crystalline Er-Si-O films of high orientation are successfully grown on Si(1 0 0) and its inclined surface. The PL and excitation spectra, fluorescence decay and the electrical properties are found to be strongly related to the crystalline properties. Excess O causes a broader 1.54 μm PL spectra, slower fluorescence decay, lower carrier-mediated excitation and higher resistivity. A precise control of O is found to be necessary to grow superlattice-structured Er-Si-O compounds, which are semiconducting and are excitable via carrier-mediated excitation mechanism.  相似文献   

14.
We fabricated Er-doped silicon-rich silicon oxide (SRSO:Er) films by pulsed laser deposition. A Si+Er target consisting of an Er metallic strip and a silicon disk was adopted with a goal to achieve a convenient control of the Er and oxygen density in the film. We found that the photoluminescence (PL) at 1.54 m is highly dependent on the ambient oxygen pressure, which determines the relative ratio of Si-Si, SiOx, and SiO2 phase in the film. The PL intensity increased drastically with increase in the annealing temperature and reached the maximum intensity at 500 °C. PACS 81.15.Fg; 81.07.-b  相似文献   

15.
Enhanced photoluminescence (PL) mechanism of Er3+-doped Al2O3 powders by Y3+ codoping at wavelength 1.53 μm has been investigated through PL measurements of 0.1 mol% Er3+- and 0-20 mol% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900 °C in a non-aqueous sol-gel method. PL intensity and lifetime of Er3+-Y3+-codoped Al2O3 powders composed of γ-(Al,Er,Y)2O3 and θ-(Al,Er,Y)2O3 phases increased with increasing Y3+-codoping concentration. The 10-20 mol% Y3+ codoping in 0.1 mol% Er3+-doped Al2O3 powders intensified the PL intensity by about 20 times, with a PL lifetime prolonged from 3.5 to 5.8 ms. A maximal increase of the optical activity of Er3+ in 0.1 mol% Er3+-Y3+-codoped Al2O3 powders about one order was achieved by 10-20 mol% Y3+ codoping. It is found that the improved PL properties for Er3+-Y3+-codoped Al2O3 powders are mainly attributed to enhanced optical activation of Er3+ in the Al2O3 by Y3+ codoping, and to the slightly increased radiative quantum efficiency of Er3+ in the Al2O3.  相似文献   

16.
A ZnO thin film was successfully synthesized on glass, flat surface and textured silicon substrates by chemical spray deposition. The textured silicon substrate was carried out using two solutions (NaOH/IPA and Na2CO3). Textured with Na2CO3 solution, the sample surface exhibits uniform pyramids with an average height of 5 μm. The properties and morphology of ZnO films were investigated. X-ray diffraction (XRD) spectra revealed a preferred orientation of the ZnO nanocrystalline film along the c-axis where the low value of the tensile strain 0.26% was obtained. SEM images show that all films display a granular, polycrystalline morphology. The morphology of the ZnO layers depends dramatically on the substrate used and follows the contours of the pyramids on the substrate surface. The average reflectance of the textured surface was found to be around 13% and it decreases dramatically to 2.57% after deposition of a ZnO antireflection coating. FT-IR peaks arising from the bonding between Zn–O are clearly represented using a silicon textured surface. A very intense photoluminescence (PL) emission peak is observed for ZnO/textured Si, revealing the good quality of the layer. The PL peak at 380.5 nm (UV emission) and the high-intensity PL peak at 427.5 nm are observed and a high luminescence occurs when using a textured Si substrate.  相似文献   

17.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

18.
Erbium doped silicon-rich silica offers broad band and very efficient excitation of erbium photoluminescence (PL) due to a sensitization effect attributed to silicon nanocrystals (Si-nc), which grow during thermal treatment. PL decay lifetime measurements of sensitised Er3+ ions are usually reported to be stretched or multi exponential, very different to those that are directly excited, which usually show a single exponential decay component.In this paper, we report on SiO2 thin films doped with Si-nc's and erbium. Time resolved PL measurements reveal two distinct 1.54 μm Er decay components; a fast microsecond component, and a relatively long lifetime component (10 ms). We also study the structural properties of these samples through TEM measurements, and reveal the formation of Er clusters. We propose that these Er clusters are responsible for the fast μs decay component, and we develop rate equation models that reproduce the experimental transient observations, and can explain some of the reported transient behaviour in previously published literature.  相似文献   

19.
Gallium-doped tin oxide (SnO2:Ga) films have been prepared on α-Al2O3 (0 0 0 1) substrates at 500 °C by the pulse mode metalorganic chemical vapor deposition (MOCVD) method. The relative amount of Ga (Ga/(Ga+Sn) atomic ratio) varied from 3% to 15%. Post-deposition annealing of the films was carried out at different temperatures for 1.5 h in ambient atmosphere . The structural, electrical, optical and photoluminescence (PL) properties of the films have been investigated as a function of annealing temperature. All the films have the rutile structure of pure SnO2 with a strong (2 0 0) preferred orientation. A single ultraviolet (UV) PL peak near 337.83 nm was observed at room temperature for the 3% Ga-doped as-grown film and near 336 nm for the 15%-doped film, which can be ascribed to electron transition from the oxygen vacancy and interstitial Ga3+ donor levels to the acceptor level formed by the substitution of Ga3+ for the Sn site. After annealing, the luminescence spectra have changed a little bit, which is being discussed in detail.  相似文献   

20.
The photoluminescence spectra of InAs quantum dots (QDs) embedded into four types of InxGa1−xAs/GaAs (x = 0.10, 0.15, 0.20 and 0.25) multi quantum well MBE structures have been investigated at 300 K in dependence on the QD position on the wafer. PL mapping was performed with 325 nm HeCd laser (35 mW) focused down to 200 μm (110 W/cm2) as the excitation source. The structures with x = 0.15 In/Ga composition in the InxGa1−xAs capping layer exhibited the maximum photoluminescence intensity. Strong inhomogeneity of the PL intensity is observed by mapping samples with the In/Ga composition of x ≥ 0.20-0.25. The reduction of the PL intensity is accompanied by a gradual “blue” shift of the luminescence maximum at 300 K as follows from the quantum dot PL mapping. The mechanism of this effect has been analyzed. PL peak shifts versus capping layer composition are discussed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号