首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou QF  Cannata J  Kirk Shung K 《Ultrasonics》2006,44(Z1):e607-e611
Using inversion domain engineering controlled by heating temperature, the LiNbO(3) (LNO) piezoelectric plate with both odd and even-order thickness-extensional modes can be excited simultaneously. Therefore, the inversion layer ultrasound transducer is expected to be capable of operating over a wider frequency range. In this paper, the electrical impedance and the acoustic characteristics of LiNbO(3) (LNO) inversion layer transducer have been studied by finite element modeling (FEM). The transducer designed for this study uses a 36 degrees rotated Y-cut LiNbO(3) thin plate with an active element thickness of approximately 100 microm. First the electrical and elastic properties of the 36 degrees rotated Y-cut LNO were obtained by transforming a basic piezoelectric matrix for Z-cut LNO. In order to validate the FEM using the transformed properties several pieces of pure and 50% inversion layer LNO were tested on the electrical impedance analyzer. The modeled impedance characteristics were consistent with the measured data. Next the model was used to design 50-60 MHz transducers using pure and 30% inversion LNO. Two lambda/4 matching layers and a Tungsten loaded epoxy backing were used in these designs. The modeled results show that an over 90% bandwidth transducer can be made with proper matching and 30% inversion layer.  相似文献   

2.
具有阻抗匹配层的宽带纵向振动压电换能器设计   总被引:8,自引:1,他引:7       下载免费PDF全文
陈航  张允孟  李志舜 《应用声学》2001,20(2):31-34,22
本文研究纵向振动压电换能器的频带展宽问题。在复合棒纵向换能器的辐射端加工适当材料的阻抗匹配层,可以使其工作在非单谐振状态下,在单层阻抗匹配层的情况下,合理地选择匹配层的厚度可以调整其谐振点之间的位置,从而改善换能器的辐射特性。本研究结果表明,对于机械品质因素Qm=6,发射响应带宽△f=4kHz的纵向振子,采用四分之一波长厚度的匹配层,在不降低发射响应的条件下,可展宽频带一倍以上。  相似文献   

3.
This work describes a new technique for constructing both linear and matrix array transducers. It used completely separated piezoelectric elements whose vibration modes have been studied experimentally. Each piezoelectric element has a λ4 matching plate and backing, and so it forms a separate transducer. The array is formed by an assembly of these transducers.The technique shows some interesting features such as the possibility of reducing the dispersion of the electroacoustic characteristics of the single elements to the required value, mechanical strength, and the possibility of periodical maintenance.  相似文献   

4.
张海燕  于建波 《中国物理 B》2011,20(9):94301-094301
Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface-bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numerical simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the S0 and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system.  相似文献   

5.
Ultrasonic guided wave focusing by a generalized phased array is studied based on dispersion curves in a multi-layered medium. The different phase of the guided waves with different frequency is added on the excitation signal on each element of the transducer array for focusing. This can be realized by designing a proper excitation pulse based on the dispersion curves of the guided waves for each of the transducer array elements. The numerical simulation results show that the guided waves with different modes, different frequency components, and from different elements of the transducer array can all be focused at the target and focusing is achieved.  相似文献   

6.
Gudra T  Opielinski KJ 《Ultrasonics》2006,44(Z1):e679-e683
The main component of every device used for investigating internal object structure by Ultrasound Transmission Tomography (UTT) is a special ultrasonic probe. This paper presents the structure of model multielement ring probe for examining objects using this method in divergent ray projection geometry. The probe is made up of 1024 rectangular separate piezoelectric transducers working at frequency f=1.7 MHz, placed inside a ring with diameter D=30 cm and height h=9 cm. Each element of the probe is equipped with a quarter-wave matching layer. All the transducers function as transmitters and receivers, and can be joined in groups both during transmitting and during receiving. Some examples of admittance characteristics of a single piezoelectric transducer and examples of shapes of pulses generated and received by particular transducers were presented. Important factors affecting the measurement resolution are the sizes of the active surface of the transducers.  相似文献   

7.
The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.  相似文献   

8.
Hollow piezoelectric cylindrical shell transducers may be made directional for underwater acoustic applications by the use of suitable acoustical baffles and the operational bandwidth may be extended by using multiple resonant modes. A theoretical and experimental investigation was performed for circumferentially baffled piezoelectric cylindrical shell transducers operating in the zero and one modes of extensional vibration. The frequency responses and directivity patterns were analyzed under various conditions of energizing separate halves of electrodes. It was found that the broadest frequency response with nearly constant beamwidth can be obtained when the two halves of the piezoelectric ring are electromechanically excited 90 deg out-of-phase. The experimental results obtained with a proof-of-concept transducer were in good agreement with the theoretical predictions.  相似文献   

9.
Lin Shuyu 《Ultrasonics》1995,33(6):445-448
Langevin ultrasonic transducers are widely used in high-power ultrasonics and underwater sound. In ultrasonic cleaning, a matching metal horn rather than a metal cylinder is used as the radiator in order to enhance the radiating surface and improve the acoustic matching between the transducer and the processed medium. To raise the effect of ultrasonic cleaning, the standing wave in the cleaning tank should be eliminated. One method to eliminate the standing wave in the tank is to use the multifrequency ultrasonic transducer. In this paper, the Langevin ultrasonic horn transducer, with two resonance frequencies, is studied. The transducer consists of two groups of piezoelectric ceramic elements: the back metal cylinder, the middle metal cylinder and the front matching metal horn. The vibrational modes of the transducer are analysed, and resonance frequency equations of the transducer in the half-wave and the all-wave vibrational modes are derived. According to the resonance frequency equations, transducers with two resonance frequencies are designed and made. The resonance frequencies, the effective electromechanical coupling coefficients and the equivalent electric impedances of the transducers are measured. It is shown that the measured resonance frequencies are in good agreement with the computed results, and the transducer can be excited to vibrate at two resonance frequencies, which correspond to the half-wave and the all-wave vibrational modes of the transducer.  相似文献   

10.
Rapid calibration of hydrophones used in biomedical ultrasound is possible with swept frequency techniques such as time delay spectrometry. However, calibrations below 2 MHz largely have been neglected because of insufficient transmitting transducer bandwidth, even though important medical applications operate in this range. To address this deficiency, several transmitting transducer designs were developed and tested, and two 1-3 piezoelectric composite designs were found to have the requisite bandwidth and uniformity of response. In one the element has a plane front face and spherically concave back face (plano-concave), and in the second both faces are concave, but with different radii of curvature (biconcave). The nonuniform thickness disperses the thickness resonance, and the composite structure suppresses radial-mode resonances. Also, the composite's lower acoustic impedance provides a more efficient match to water. The piezoelectric composite transducers were found to have transmitting pressure sensitivities superior to ceramic single-element and segmented designs having similar dimensions, and their responses were significantly more uniform (< 25 dB variation from 0.1-2 MHz, with < 1 dB fine structure variation), likely due to decreased contributions from radial modes.  相似文献   

11.
Air coupled piezoelectric ultrasonic array transducers are a novel tool that could lead to interesting advances in the area of non-contact laminar material testing using Lamb wave's propagation techniques. A key issue on the development of such transducers is their efficient coupling to air media (impedance mismatch between the piezoelectric material and air is 90 dB or more). Adaptation layers are used in order to attain good matching and avoid possible serious signal degradation. However, the introduction of these matching layers modify the transducer surface behaviour and, consequently, radiation characteristics are altered, making the usual idealization criteria (of uniform surface movement) adopted for field simulation purposes inaccurate. In our system, we have a concave linear-array transducer of 64 elements (electrically coupled by pairs) working at 0.8 MHz made of PZ27 rectangular piezoceramics (15 mm x 0.3 mm) with two matching layers made of polyurethane and porous cellulose bonded on them. Experimental measurements of the acoustic aperture of single excited array elements have shown an increment on the geometrical dimensions of its active surface. A sub-millimeter vibrometer laser scan has revealed an extension of the aperture beyond the supposed physical single array element dimensions. Non-uniform symmetric apodized velocity surface vibration amplitude profile with a concave delay contour indicates the presumed existence of travelling wave phenomena over the surface of the outer array matching layer. Also, asymptotic propagation velocities around 2500 m/s and attenuation coefficient between 15 and 20 dB/mm has been determined for the travelling waves showing clear tendencies. Further comparisons between the experimental measurements of single array element field radiation diagram and simulated equivalent aperture counterpart reveal good agreement versus the ideal (uniform displaced) rectangular aperture. For this purpose an Impulse Response Method (IRM) has been used.  相似文献   

12.
电容MEMS超声换能器研究进展   总被引:4,自引:3,他引:1       下载免费PDF全文
栾桂冬 《应用声学》2012,31(4):241-248
MEMS(micro-electromechanical systems)超声换能器(MEMS ultrasonic transducer,简称MUT)是采用微电子和微机械加工技术制作的新型超声换能器。与传统超声换能器相比,MUT具有体积小、重量轻、成本低、功耗低、可靠性高、频率控制灵活、频带宽、灵敏度高以及易于与电路集成和实现智能化等特点。是超声换能器的重要的研究方向之一。MUT的研究主要包括压电MUT(piezoelectric MUT,简称PMUT)和电容MUT(capacitiveMUT,简称CMUT)两个方面。本文概述了CMUT研究的发展进程和研究成果,展望了CMUT的研究和应用前景。  相似文献   

13.
Wave propagation in a wooden bar   总被引:2,自引:0,他引:2  
Veres IA  Sayir MB 《Ultrasonics》2004,42(1-9):495-499
In this paper we will present a method to determine the material properties of a wooden bar with rectangular cross-section using guided waves in the measurement. We modelled the wood as an orthotropic material with nine independent constants. We determined the dispersion curves theoretically in the three-dimensional case using a semi-analytical finite element method. In our laboratory we excited transversal and longitudinal waves in wooden bars of 2.5-4 m length by piezoceramic transducers. We measured the displacement or the velocity of the surface of the bar by a laser-interferometer. The dispersion curves of the bar are determined from the measurement by the linear prediction method. We related the dispersion curves and the material properties. We found the material properties by parametric model fitting.  相似文献   

14.
Using periodic permanent magnet(PPM) electromagnetic acoustic transducers(EMATs), different shear horizontal(SH) guided wave modes can form simultaneously in some situations, which can interfere with the inspection. The main cause of this phenomenon(typically named multiple modes) is related to the frequency bandwidth of excitation signals and the transducer spatial bandwidth. Simply narrowing the frequency bandwidth cannot effectively limit the number of different SH modes. Previous researches showed that unnecessary SH wave modes can be eliminated by using dual EMATs.However, in practical applications, it is more convenient to change the excitation frequency than to use dual EMATs. In this paper, the stress boundary conditions of the PPM-EMAT are analyzed, the analytical expression of SH guided wave is established, and the magnitude of SH guided wave mode under continuous tone and tone-burst input is obtained. A method to generate a single SH mode by re-selecting an operating point is proposed. Furthermore, the influence of the frequency bandwidth of the tone-burst signal is analyzed. Finally, a single SH mode excitation is achieved with tone-burst input.  相似文献   

15.
Study of 1-3-2 type piezoelectric composite transducer array   总被引:2,自引:0,他引:2  
Li G  Wang LK  Luan GD  Zhang JD  Li SX 《Ultrasonics》2006,44(Z1):e673-e677
Based on a new structure of precise location and decoupling between the transducer elements, high frequency underwater transmission transducer arrays with 4 elements and 8 elements serried uniform linear array were studied, using novel 1-3-2 type piezoelectric composite as the sensing material. There are ceramic framework supports in the transverse and longitudinal directions in 1-3-2 type piezoelectric composite structure; the transducer is free from the influence of outside mechanical impact and the environment temperature change. Transducer and array samples have been designed, fabricated and measured. The resonant frequency is 150 kHz, resonant transmission response greater than 160 dB, and bandwidth is from 140 kHz to 160 kHz. The results indicate that, the transducer array has wide bandwidth, high sensitivity, stabile performance, and good coherence.  相似文献   

16.
厚度模压电超声换能器作为超声波发射、接收以及电信号间转换的载体,是超声成像与检测系统的核心器件,一般由压电层、匹配层和背衬层3部分组成。超声换能器的性能一定程度上决定着整体超声设备的性能,影响了其在工业、医学、军事等领域的应用。该换能器的关键性能指标(带宽、灵敏度)除了受到压电层的影响,还与匹配层、背衬层等无源声学材料的设计密切相关。该文综述了近年来厚度模压电超声换能器无源声学材料(匹配层、背衬层和声透镜)的研究进展,提出了当前该类材料面临的难题和解决途径,并对其未来发展方向进行了展望。  相似文献   

17.
Acoustic impedance matching of medical ultrasound transducers   总被引:1,自引:0,他引:1  
Ultrasonic transducers for pulse-echo systems are studied both theoretically and experimentally. For the theoretical calculations the Mason model for thickness-mode disc transducers with and without backing and matching layers is used. By building several of the theoretically investigated transducer configurations it is shown that theory and experiment agree well. Thus the properties of a transducer can be predicted to a good approximation before its experimental realization. To find transducers with good sensitivity and short pulses, the pulse shape and frequency response for the following classes of transducers were studied both theoretically and experimentally: transducers with backing only, transducers with heavy backing and front matching layers, and air-backed transducers with front matching layers.  相似文献   

18.
《Ultrasonics》2005,43(1):13-19
A rapid identification of the piezoelectric material constants for a piezoelectric transducer is proposed. The validity of a three-dimensional finite element routine was confirmed experimentally. The asymptotic waveform evaluation (AWE) was adopted for a fast frequency sweep of the finite element analysis. The three-dimensional finite element method with an AWE and a design sensitivity method was used for a material inversion scheme of piezoelectric transducers. In order to confirm the inversion routine of the material constants, the mechanical displacements, which mean the mode shape, were calculated along the vertical and lateral position of the sample transducer.  相似文献   

19.
Ultrasonic NDT applications are frequently based on the spike excitation of piezoelectric transducers by means of efficient pulsers which usually include a power switching device (e.g. SCR or MOS-FET) and some rectifier components. In this paper we present an approximate frequency domain electro-acoustic model for pulsed piezoelectric ultrasonic transmitters which, by integrating partial models of the different stages (driving electronics, tuning/matching networks and broadband piezoelectric transducer), allows the computation of the emission transfer function and output force temporal waveform. An approximate frequency domain model is used for the evaluation of the electrical driving pulse from the spike generator. Tuning circuits, interconnecting cable and mechanical impedance matching layers are modeled by means of transmission lines and the classical quadripole approach. The KLM model is used for the piezoelectric transducer. In addition, a PSPICE scheme is used for an alternative simulation of the broadband driving spike, including the accurate evaluation of non-linear driving effects. Several examples illustrate the capabilities of the specifically developed software.  相似文献   

20.
Joo HW  Lee CH  Jung HK 《Ultrasonics》2004,43(1):13-19
A rapid identification of the piezoelectric material constants for a piezoelectric transducer is proposed. The validity of a three-dimensional finite element routine was confirmed experimentally. The asymptotic waveform evaluation (AWE) was adopted for a fast frequency sweep of the finite element analysis. The three-dimensional finite element method with an AWE and a design sensitivity method was used for a material inversion scheme of piezoelectric transducers. In order to confirm the inversion routine of the material constants, the mechanical displacements, which mean the mode shape, were calculated along the vertical and lateral position of the sample transducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号