首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   826篇
  免费   69篇
  国内免费   57篇
化学   490篇
晶体学   6篇
力学   27篇
综合类   5篇
数学   171篇
物理学   253篇
  2023年   7篇
  2022年   5篇
  2021年   16篇
  2020年   14篇
  2019年   16篇
  2018年   17篇
  2017年   13篇
  2016年   28篇
  2015年   31篇
  2014年   28篇
  2013年   45篇
  2012年   56篇
  2011年   59篇
  2010年   35篇
  2009年   40篇
  2008年   46篇
  2007年   57篇
  2006年   31篇
  2005年   47篇
  2004年   30篇
  2003年   46篇
  2002年   34篇
  2001年   26篇
  2000年   33篇
  1999年   14篇
  1998年   18篇
  1997年   11篇
  1996年   6篇
  1995年   9篇
  1994年   13篇
  1993年   15篇
  1992年   12篇
  1991年   6篇
  1990年   3篇
  1989年   8篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   10篇
  1984年   5篇
  1983年   7篇
  1982年   8篇
  1981年   6篇
  1980年   7篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1972年   2篇
  1942年   3篇
  1928年   2篇
排序方式: 共有952条查询结果,搜索用时 43 毫秒
1.
2.
We put forth a dynamic computing framework for scale‐selective adaptation of weighted essential nonoscillatory (WENO) schemes for the simulation of hyperbolic conservation laws exhibiting strong discontinuities. A multilevel wavelet‐based multiresolution procedure, embedded in a conservative finite volume formulation, is used for a twofold purpose. (i) a dynamic grid adaptation of the solution field for redistributing grid points optimally (in some sense) according to the underlying flow structures, and (ii) a dynamic minimization of the in built artificial dissipation of WENO schemes. Taking advantage of the structure detection properties of this multiresolution algorithm, the nonlinear weights of the conventional WENO implementation are selectively modified to ensure lower dissipation in smoother areas. This modification is implemented through a linear transition from the fifth‐order upwind stencil at the coarsest regions of the adaptive grid to a fully nonlinear fifth‐order WENO scheme at areas of high irregularity. Therefore, our computing algorithm consists of a dynamic grid adaptation strategy, a scale‐selective state reconstruction, a conservative flux calculation, and a total variation diminishing Runge‐Kutta scheme for time advancement. Results are presented for canonical examples drawn from the inviscid Burgers, shallow water, Euler, and magnetohydrodynamic equations. Our findings represent a novel direction for providing a scale‐selective dissipation process without a compromise on shock capturing behavior for conservation laws, which would be a strong contender for dynamic implicit large eddy simulation approaches.  相似文献   
3.
A series of nine [Sb7W36O133Ln3M2(OAc)(H2O)8]17? heterometallic anions ( Ln3M2 ; Ln=La–Gd, M=Co; Ln=Ce, M=Ni and Zn) have been obtained by reacting 3 d metal disubstituted Krebs‐type tungstoantimonates(III) with early lanthanides. Their unique tetrameric structure contains a novel {MW9O33} capping unit formed by a planar {MW6O24} fragment to which three {WO2} groups are condensed to form a tungstate skeleton identical to that of a hypothetical trilacunary derivative of the ?‐Keggin cluster. It is shown, for the first time, that classical Anderson–Evans {MW6O24} anions can act as building blocks to construct purely inorganic large frameworks. Unprecedented reactivity in the outer ring of these disk‐shaped species is also revealed. The Ln3M2 anions possess chirality owing to a {Sb4O4} cluster being encapsulated in left‐ or right‐handed orientations. Their ability to self‐associate in blackberry‐type vesicles in solution has been assessed for the Ce3Co2 derivative.  相似文献   
4.
5.
This note addresses the issue as to which ceers can be realized by word problems of computably enumerable (or, simply, c.e.) structures (such as c.e. semigroups, groups, and rings), where being realized means to fall in the same reducibility degree (under the notion of reducibility for equivalence relations usually called “computable reducibility”), or in the same isomorphism type (with the isomorphism induced by a computable function), or in the same strong isomorphism type (with the isomorphism induced by a computable permutation of the natural numbers). We observe, e.g., that every ceer is isomorphic to the word problem of some c.e. semigroup, but (answering a question of Gao and Gerdes) not every ceer is in the same reducibility degree of the word problem of some finitely presented semigroup, nor is it in the same reducibility degree of some non-periodic semigroup. We also show that the ceer provided by provable equivalence of Peano Arithmetic is in the same strong isomorphism type as the word problem of some non-commutative and non-Boolean c.e. ring.  相似文献   
6.
We report herein an efficient, fast, and simple synthesis of an imine‐based covalent organic framework (COF) at room temperature (hereafter, RT‐COF‐1 ). RT‐COF‐1 shows a layered hexagonal structure exhibiting channels, is robust, and is porous to N2 and CO2. The room‐temperature synthesis has enabled us to fabricate and position low‐cost micro‐ and submicropatterns of RT‐COF‐1 on several surfaces, including solid SiO2 substrates and flexible acetate paper, by using lithographically controlled wetting and conventional ink‐jet printing.  相似文献   
7.
New fused pyrazolo‐1,4‐naphthoquinones were prepared from the reaction of hydrazines with 6‐(4‐methyl‐3‐pentenyl)‐1,4‐naphthoquinone. The reaction was extended to hydroxylamine to afford the corresponding isoxazolo‐1,4‐napthoquinone compound.  相似文献   
8.
Four new phenanthrene derivatives, gastrobellinols A-D (1–4), were isolated from the methanolic extract of Gastrochilus bellinus (Rchb.f.) Kuntze, along with eleven known phenolic compounds including agrostophyllin (5), agrostophyllidin (6), coniferyl aldehyde (7), 4-hydroxybenzaldehyde (8), agrostophyllone (9), gigantol (10), 4-(methoxylmethyl)phenol (11), syringaldehyde (12), 1-(4′-hydroxybenzyl)-imbricartin (13), 6-methoxycoelonin (14), and imbricatin (15). Their structures were determined by spectroscopic methods. Each isolate was evaluated for α-glucosidase inhibitory activity. Compounds 1, 2, 3, 7, 9, 13, and 15 showed higher activity than the drug acarbose. Gastrobellinol C (3) exhibited the strongest α-glucosidase inhibition with an IC50 value of 45.92 μM. A kinetic study of 3 showed competitive inhibition on the α-glucosidase enzyme. This is the first report on the phytochemical constituents and α-glucosidase inhibitory activity of G. bellinus.  相似文献   
9.
Non-lamellar lyotropic liquid crystalline (LLC) lipid nanoparticles contain internal multidimensional nanostructures such as the inverse bicontinuous cubic and the inverse hexagonal mesophases, which can respond to external stimuli and have the potential of controlling drug release. To date, the internal LLC mesophase responsiveness of these lipid nanoparticles is largely achieved by adding ionizable small molecules to the parent lipid such as monoolein (MO), the mixture of which is then dispersed into nanoparticle suspensions by commercially available poly(ethylene oxide)–poly(propylene oxide) block copolymers. In this study, the Reversible Addition-Fragmentation chain Transfer (RAFT) technique was used to synthesize a series of novel amphiphilic block copolymers (ABCs) containing a hydrophilic poly(ethylene glycol) (PEG) block, a hydrophobic block and one or two responsive blocks, i.e., poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) and/or poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). High throughput small angle X-ray scattering studies demonstrated that the synthesized ABCs could simultaneously stabilize a range of LLC MO nanoparticles (vesicles, cubosomes, hexosomes, inverse micelles) and provide internal particle nanostructure responsiveness to changes of hydrogen peroxide (H2O2) concentrations, pH and temperature. It was found that the novel functional ABCs can substitute for the commercial polymer stabilizer and the ionizable additive in the formation of next generation non-lamellar lipid nanoparticles. These novel formulations have the potential to control drug release in the tumor microenvironment with endogenous H2O2 and acidic pH conditions.  相似文献   
10.
Photoactive materials based on dye molecules incorporated into thin films or bulk solids are useful for applications as photosensitization, photocatalysis, solar cell sensitization and fluorescent labeling, among others. In most cases, high concentrations of dyes are desirable to maximize light absorption. Under these circumstances, the proximity of dye molecules leads to the formation of aggregates and statistical traps, which dissipate the excitation energy and lower the population of excited states. The search for enhancement of light collection, avoiding energy wasting requires accounting the photophysical parameters quantitatively, including the determination of quantum yields, complicated by the presence of light scattering when particulate materials are considered. In this work we summarize recent advances on the photophysics of dyes in light‐scattering materials, with particular focus on the effect of dye concentration. We show how experimental reflectance, fluorescence and laser‐induced optoacoustic spectroscopy data can be used together with theoretical models for the quantitative evaluation of inner filter effects, fluorescence and triplet formation quantum yields and energy transfer efficiencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号