首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
江学范  刘先锋  吴银忠  韩玖荣 《中国物理 B》2012,21(7):77502-077502
The magnetic and electronic properties of the geometrically frustrated triangular antiferromagnet CuCrO2 are investigated by first principles through density functional theory calculations within the generalized gradient approxi- mations (GGA)+U scheme. The spin exchange interactions up to the third nearest neighbours in the ab plane as well as the coupling between adjacent layers are calculated to examine the magnetism and spin frustration. It is found that CuCrO2 has a natural two-dimensional characteristic of the magnetic interaction. Using Monte Carlo simulation, we obtain the Neel temperature to be 29.9 K, which accords well with the experimental value of 24 K. Based on non- collinear magnetic structure calculations, we verify that the incommensurate spiral-spin structure with (110) spiral plane is believable for the magnetic ground state, which is consistent with the experimental observations. Due to intra-layer geometric spin frustration, parallel helical-spin chains arise along the a, b, or a+ b directions, each with a screw-rotation angle of about I20°. Our calculations of the density of states show that the spin frustration plays an important role in the change of d-p hybridization, while the spin-orbit coupling has a very limited influence on the electronic structure.  相似文献   

2.
Using the perturbation method,we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling.The heat generated by the spin current is calculated.With the increase of the width of the quantum wire,the spin current and the heat generated both exhibit period oscillations with equal amplitudes.When the quantum-channel number is doubled,the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2.For the spin current j s,xy,the amplitude increases with the decrease of the quantum channel;while the amplitude of the spin current j s,yx remains the same.Therefore we conclude that the effect of the quantum-channel number on the spin current j s,xy is greater than that on the spin current j s,yx.The strength of the Rashba spin-orbit coupling is tunable by the gate voltage,and the gate voltage can be varied experimentally,which implies a new method of detecting the spin current.In addition,we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels.All these characteristics of the spin current will be very important for detecting and controlling the spin current,and especially for designing new spintronic devices in the future.  相似文献   

3.
The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.  相似文献   

4.
The spin distribution of the evaporation residue cross section of nuclei ^194pb, ^200Pb, ^206Pb, and ^200 Os are calculated via a Langevin equation coupled with a statistical decay model. It is shown that with increasing the neutronto-proton ratio (N/Z) of the system, the sensitivity of the significantly. Moreover, for ^200Os this spin distribution is no spin distribution to the nuclear dissipation is decreased longer sensitive to the nuclear dissipation. These results suggest that to obtain a more accurate pre-saddle viscosity coefficient through the measurement of the evaporation residue spin distribution, it is best to yield those compound systems with low N/Z.  相似文献   

5.
The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phase separation and phase transitions were observed from the ESR spectra data. Between 350 K and 300 K, both paramagnetic resonance (PMR) and anisotropic ferromagnetic resonance (FMR) lines were observed in the ab plane and the c axis direction, suggesting a coexistence of the paramagnetic (PM) phase and the ferromagnetic (FM) phase. The magnetization measurement reveals a spin-glass-like behavior in single-crystal (Lao.8Euo.2)4/3 Sr5/3Mn2O7 below the temperature of spin freezing Tf (- 29.5 K).  相似文献   

6.
This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1 ∝ T-1.07 at low temperatures and T1 ∝ T-3.3 at high temperatures for acoustic deformation constant Pad = 1.4 × 10^7 eV and optical deformation constant Pod = 4.0 × 10^17 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 ∝ B-2.7 at 100 K and T1 ∝ B-2.3 at 150 K, which nearly agree with the result of Yafet, T1 ∝ B-3.0- B -2.5.  相似文献   

7.
Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are considered. The energy equation is obtained by using the Nikiforov-Uvarov method and the corresponding wave functions are expressed in terms of the hypergeometric functions. The effects of the Coulomb and Yukawa tensor interactions are numerically discussed as well.  相似文献   

8.
The dynamical properties of one-dimensional random transverse Ising model (RTIM) with a double-Gaussian disorder is investigated by the recursion method. Based on the first twelve recurrences derived analytically, the spin autocorrelation function (SAF) and associated spectral density at high temperature were obtained numerically. Our results indicate that when the standard deviation σg (or OrB) of the exchange couplings Ji (or the random transverse fields Bi) is small, no long-time tail appears in the SAE The spin system undergoes a crossover from a central-peak behavior to a collectivemode behavior, which is the dynamical characteristics of RTIM with the bimodal disorder. However, when σJ (or σB) is large enough, the system exhibits similar dynamics behaviors to those of the RTIM with the Gaussian disorder, i.e., the system exhibits an enhanced central-peak behavior for large σJ or a disordered behavior for large σB. In this instance, SAFs exhibit a similar long-time tail, i.e., C(t) ~ t ^-2 for large t. Similar properties are obtained when Ji (or Bi) satisfy the double-exponential distribution or the double-uniform distribution. Besides, when both the standard deviations and the mean values of the exchange couplings are small, the effects of the Gaussian random bonds may drive the system undergo two crossovers from a triplet state to a doublet state, and then to a collective-mode state.  相似文献   

9.
A. Deur 《中国物理 C》2009,33(12):1261-1266
We present recent results from Jefferson Lab on sum rules related to the spin structure of the nucleon. We then discuss how the Bjorken sum rule with its connection to the Gerasimov-Drell-Hearn sum, allows us to conveniently define an effective coupling for the strong force at all distances.  相似文献   

10.
The bound state solutions of Dirac equations for a trigonometric Scarf potential with a new tensor potential under spin and pseudospin symmetry limits are investigated using Romanovski polynomials. The proposed new tensor potential is inspired by superpotential form in supersymmetric(SUSY) quantum mechanics. The Dirac equations with trigonometric Scarf potential coupled by a new tensor potential for the pseudospin and spin symmetries reduce to Schrdinger-type equations with a shape invariant potential since the proposed new tensor potential is similar to the superpotential of trigonometric Scarf potential. The relativistic wave functions are exactly obtained in terms of Romanovski polynomials and the relativistic energy equations are also exactly obtained in the approximation scheme of centrifugal term. The new tensor potential removes the degeneracies both for pseudospin and spin symmetries.  相似文献   

11.
Using the effective non-Markovian measure proposed by Breuer et al. recently, we study the memory effect of a central qubit system coupled to a spin chain environment with Dzyaloshinskii-Moriya interaction in a transverse field. It is discovered that the central qubit system presents different memory effects in different environment phases with the different oscillatory behaviors of the decoherence factor. Moreover, it is revealed that the Dzyaloshinskii-Moriya interaction has a prominent influence on the memory effect of a central qubit system via modifying the amplitude and period of the decoherence factor under certain conditions.  相似文献   

12.
Approximate analytical solutions of the Dirac equation in the case of pseudospin and spin symmetry limits are inves- tigated under the Deng-Fan potential by applying the asymptotic iteration method for the arbitrary quantum numbers n and ~~. Some of the numerical results are also represented in both pseudospin symmetry and spin symmetry limits.  相似文献   

13.
柴政  胡茂金  王瑞强  胡梁宾 《中国物理 B》2014,23(2):27201-027201
We study the theoretical effect of k-cubic (i.e, cubic-in-momentum) Dresselhaus spin-orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin-orbit coupling, and after taking the effect of k-cubic Dresselhaus spin-orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results.  相似文献   

14.
In this paper, on the basis of Huybrechts' strong-coupling polaron model, the Tokuda modified linearcombination operator method and the unitary transformation method are used to study the properties of the strongcoupling bound polaron considering the influence of Rashba effect, which is brought by the spin-orbit (SO) interaction, in the semiconductor triangular quantum well (TQW). Numerical calculation on the RbCI TQW, as the example, is performed. The expressions for the effective mass of the polaron as a function of the vibration frequency, the velocity, the Coulomb bound potential and the electron areal density are derived. Numerical results show that the total effective mass of the polaron is composed of three parts. The interactions between the orbit and the spin with different directions have different effects on the effective mass of the bound polaron.  相似文献   

15.
The approximate analytical solutions of the Dirac equation with the Poeschl-Teller potential is presented for arbitrary spin-orbit quantum number κ within the framework of the spin symmetry concept. The energy eigenvalues and the corresponding two Dirac spinors are obtained approximately in closed forms. The limiting cases of the energy eigenvalues and the two Dirac spinors are briefly discussed.  相似文献   

16.
Microstructure of NiO-containing Co/Cu/Co spin valves (CCC-SV) annealed at room temperature for nearly four years has been studied by synchrotron radiation X-ray diffraction. With the annealing time expanding, the thickness of each sub-layer remains nearly unchanged while the interface roughness varies obviously compared with that of samples without annealing. The roughness at the interface of NiO/Co decreases with the annealing time increasing for both of the samples with NiO layer on the top (TSV) and under the bottom (BSV) of CCC-SV. On the other hand, the roughness at Co/Cu interface increases with the annealing time expanding for BSV while it decreases for TSV. These results indicate that the structure of TSV is more stable than that of BSV.  相似文献   

17.
Spin parity effect on magnetic relaxation by quantum tunneling in the biaxial spin model is studied by taking into account the transverse local stray field. It is shown that the square root time dependence in the even resonance occurs in the presence of a distribution of transverse anisotropic parameters, while the odd resonance always shows exponential relaxation. Magnetic relaxation under a sweeping field is also studied. The variation of the relaxation curve with the increasing distribution width of the local stray field for even resonance is qualitatively different from that of the odd resonance. The theoretical result on even resonance is in agreement with experimental results on Fe8 system, while the prediction for odd resonance awaits the experimental verification.  相似文献   

18.
We investigate the dependence of the average parameter estimation precision (APEP), which is defined by the quantum Fisher information, on the polar angle of the initial coherent spin state |θ0,φ0〉 in a one-axis twisting model. Jin et al. [New J. Phys. 11 (2009) 073049] found that the spin squeezing sensitively depends on the polar angle θ0 of the initial coherent spin state. We show explicitly that the APEP is robust to the initial polar angle θ0 in the vicinity of π/2 and a near- Heisenberg limit 2IN in quantum single-parameter estimation may still be achieved for states created with the nonlinear evolution of the nonideal coherent spin states θ0- π/2. Based on this model, we also consider the effects of the collective dephasing on spin squeezing and the APEE  相似文献   

19.
The de Haas-van Alphen(dHvA) oscillations of electronic magnetization in a monolayer graphene with structureinduced spin-orbit interaction(SOI) are studied.The results show that the dHvA oscillating centre in this system deviates from the well known(zero) value in a conventional two-dimensional electron gas.The inclusion of SOI will change the well-defined sawtooth pattern of magnetic quantum oscillations and result in a beating pattern.In addition,the SOI effects on Hall conductance and magnetic susceptibility are also discussed.  相似文献   

20.
It is found that ultrathin poly(3-hexylthiophene) (P3HT) film with a 2.5 nm-thick layer exhibits a higher mobility of 5.0× 10-2 cm2/V-s than its bulk counterpart. The crystalline structure of the as-fabricated ultrathin P3HT layer is verified by atomic force microscopy as well as grazing incidence X-ray diffraction. Transient measurements of the as-fabricated transistors reveal the influence of the interface traps on charge transport. These results are explained by the trap energy level distribution at the interface manipulated by layers of polymer film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号