首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Electrospun zein membranes were prepared using DMF as solvent. By changing the solution concentration, the electrospinning voltage and the distance between the spinneret and collector, nanofibrous meshes without bead defects could be obtained. In order to improve the mechanical strength of the hydrated zein meshes, core-shell-structured nanofibrous membranes with PCL as the core material and zein forming the shell were prepared by coaxial electrospinning. The core-shell structure of the composite fibers was confirmed by SEM characterization of the fibers, either extracted with chloroform to remove the inner PCL, or elongated to expose their cross-section. The composition and average diameter of the composite fibers could be modulated by the feed rate of the inner PCL solution. It was found that the core-shell fibrous membranes have similar wettability to the electrospun zein mesh. The presence of PCL in the fibers could significantly improve the mechanical properties of the zein membrane.  相似文献   

2.
Polynaphthalimide (PNI) with six-membered imide ring (6-PI) has better chemical resistance than five-membered imide ring (5-PI),but is difficult to be processed into nanofibers due to the poor processability.In this work,we proposed a template strategy to fabricate nanofiber 6-PI membranes and their composite membranes.Neat 6-PI and 6-PI composite fibrous membranes were prepared using high-molecular-weight polymers 5-PAA and PVP as templates by electrospinning.FTIR,DMA,TGA and tensile tests were used to characterize their chemical structures,thermal stability and mechanical properties.Further eye-observation,micro-morphology investigation and tensile tests were applied to evaluate the chemical resistance of nanofibrous membranes in strong acid,strong alkaline,and concentrated salt.The results demonstrated that 6-PI nanofibrous membranes possessed the best thermal stability,best acid,alkaline,and salt resistance with the highest mechanical retention.This study will provide basic information for high-performance electrospun 6-PI nanofiber membranes and provide opportunities for applications of PIs in different chemically harsh environments.  相似文献   

3.
Tissue engineering scaffolds produced by electrospinning feature a structural similarity to the natural extracellular matrix. In this study, poly(lactide-co-glycolide) (PLGA) and chitosan/poly(vinyl alcohol) (PVA) were simultaneously electrospun from two different syringes and mixed on the rotating drum to prepare the nanofibrous composite membrane. The composite membrane was crosslinked by glutaraldehyde vapor to maintain its mechanical properties and fiber morphology in wet stage. Morphology, shrinkage, absorption in phosphate buffered solution (PBS) and mechanical properties of the electrospun membranes were characterized. Fibroblast viability on electrospun membranes was discussed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay and cell morphology after 7 days of culture. Results indicated that the PBS absorption of the composite membranes, no matter crosslinked or not, was higher than the electrospun PLGA membrane due to the introduction of hydrophilic components, chitosan and PVA. After crosslinking, the composite membrane had a little shrinkage after incubating in PBS. The crosslinked composite membrane also showed moderate tensile properties. Cell culture suggested that electrospun PLGA-chitosan/PVA membrane tended to promote fibroblast attachment and proliferation. It was assumed that the nanofibrous composite membrane of electrospun PLGA-chitosan/PVA could be potentially used for skin reconstruction.  相似文献   

4.
β-phase enriched piezoelectric poly(vinylidene fluoride) (PVDF) films/fibers are often prepared by high-energy costing methods, including mechanical stretching, high-electric field or electrospinning. In this study, PVDF piezoelectric microfibers, for the first time, were prepared by microfluidic spinning technology. The β-phase enriched PVDF microfibers with various diameters could be easily obtained inside the microfluidic channel due to the mass transfer induced phase inversion of the inner PVDF solution. The influence of diameter of the fibers, PVDF concentration of the inner phase and water content of the outer phase on the β-phase content and crystallinity degree of the obtained fibers was studied in detail. The obtained β-phase enriched fiber was weaved into meshes. Flexible piezoelectric fabrics were then developed based on these meshes, and further used as in-situ and real time human motion monitoring. This simple and effective strategy provides a promising microfluidic spinning technique toward the development of functional microfibers and wearable piezoelectric sensors, which may also give some implies for the industrial wet-spinning of piezoelectric PVDF fibers in the future.  相似文献   

5.
以聚偏氟乙烯(PVDF)和硅藻土为原料,通过静电纺丝法制备PVDF@硅藻土复合纤维膜,用于锂离子电池隔膜。 研究了隔膜的吸液率、热稳定性和电化学性能等。 添加硅藻土可有效提高复合膜的电解液吸收率和电化学性能,其中吸液率可达623.6%,相比于PVDF膜和聚丙烯(PP)膜具有优异的循环性能和倍率性能。  相似文献   

6.
Some modified attapulgites (ATPs), such as surface modified by amino (‐NH2) or polymethylmethacrylate (PMMA) were used to prepare polyvinylidene fluoride (PVDF)/ATP composite ultrafiltration membranes by nonsolvent induced phase separation method. The excellent compatibility between PMMA or amino and PVDF may promote the dispersion of ATP in PVDF. The thermal, mechanical, hydrophilic, and micro‐morphology of the composite ultrafiltration membranes were characterized. The results showed that with the addition of the modified ATP, the properties of the membranes, such as mechanical and hydrophilic, were improved. When the content of ATP‐g‐PMMA was 2%, the overall performance of the PVDF composite membranes was the best.  相似文献   

7.
Wu  Jiaxi  Li  Qiushi  Su  Ganmao  Luo  Ronggang  Du  Duanben  Xie  Linkun  Tang  Zhengguan  Yan  Jinsong  Zhou  Juying  Wang  Siqun  Xu  Kaimeng 《Cellulose (London, England)》2022,29(10):5745-5763

Rapid global industrialization has worsened the heavy metal contamination of aquatic ecosystems globally. In this study, green, ultrafine cellulose-based porous nanofibrous membranes for efficient heavy metal removal were obtained by incorporating chitosan (CS) and using conventional and core–shell electrospinning ways. The relationship between the parameters of the electrospinning solution, the micro-morphology and porosity, the chemically active sites, the thermal stability, and the adsorption performance of the biocomposite nanofibrous membranes were analyzed. The adsorption effects of the copper ions, including the initial concentration, solution pH, and interaction time, were investigated. The results show that the average diameters of the conventional and core–shell ultrafine nanofibers with 50% and 30% CS loading are 56.22 nm and 37.28 nm, respectively. The core–shell cellulose acetate (CA)/CS biocomposite nanofibrous membranes showed the weaker thermal stability with a 48.2 °C lower maximum thermal decomposition temperature and induced the surface aggregation of more copper ions compared to the conventional one. A more uniform distribution of the chemical adsorption sites is obtained by conventional single-nozzle electrospinning than by core–shell electrospinning, which effectively promotes the adsorption performance of copper ions and decreases the surface shrinkage of the nanofibrous membranes during adsorption. The 30% CS conventional nanofibrous membranes at an aqueous solution pH of 5 showed the optimum adsorption capacity of copper ions (86.4 mg/g). The smart combination of renewable biomass with effective chemical adsorption sites, electrospinning technology that produces an interwoven porous structure, and an adsorption method with low cost and facile operation shows a promising prospect for water treatment.

  相似文献   

8.
We report the structure and thermal properties of blends comprising poly(vinylidene fluoride) (PVDF) and a random fluorinated copolymer (FCP) of poly(methyl methacrylate)‐random‐1H,1H,2H,2H‐perfluorodecyl methacrylate, promising membrane materials for oil–water separation. The roles of processing method and copolymer content on structure and properties were studied for fibrous membranes and films with varying compositions. Bead‐free, nonwoven fibrous membranes were obtained by electrospinning. Fiber diameters ranged from 0.4 to 1.9 μm, and thinner fibers were obtained for PVDF content >80%. As copolymer content increased, degree of crystallinity and onset of degradation for each blend decreased. Processing conditions have a greater impact on the crystallographic phase of PVDF than copolymer content. Fibers have polar beta phase; solution‐cast films contain gamma and beta phase; and melt crystallized films form alpha phase. Kwei's model was used to model the glass transition temperatures of the blends. Addition of FCP increases hydrophobicity of the electrospun membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 312–322  相似文献   

9.
In this paper, experimental investigation and numerical modelling of the mechanical properties of polyvinylidene fluoride (PVDF) nanofibrous membranes produced by electrospinning are addressed. Membranes with three different diameters are fabricated by adjusting the needle-collector distance during electrospinning. The fiber morphology and the physical properties of the resulting membranes are investigated using Scanning Electron Microscopy (SEM) while their elastic properties are probed using conventional tensile tests. It is found that the membrane with the largest nanofiber diameters are filled with large beads while the contrary is found in the membrane with the smallest nanofiber diameter. Consequently, the membrane with the smallest nanofiber diameter yielded the highest membrane Young's modulus thanks to better fiber packing and higher crystallinity in the nanofibers. Next, the experimental results serve as basis for a pixel-based finite element method (FEM) which is applied directly on the SEM images of the membranes. This technique has the advantage of providing estimations of mechanical properties from the real structure of the membranes. Two parameters are needed for this linear elastic analysis: the elastic modulus of a single fiber and the fiber percentage in the membrane. Results show that the model predictions are in good agreement with experimental data. These results suggest that the pixel-based FEM could be a promising nondestructive alternative to the conventional tensile tests.  相似文献   

10.
Titania nanofillers were used to reinforce nanofibers in composite mats produced by electrospinning of poly(vinyl butyral) with two different concentrations of polymers. The titania nanoparticles and titania nanotubes were added into an acetic acid/ethanol solution in different contents of 3 and 1 wt%, respectively. The effect of the processing system on the morphology of the produced fibers was analyzed. The antimicrobial poly(vinyl butyral) composite fibers with titanium dioxide nanoparticles and titanium dioxide nanotubes were produced by single and multineedle electrospinning systems. This study reports fabrication of composite nanofibrous mats with significant mechanical and antimicrobial properties at a high production speed, which is promising for commercial applications (health care, photocatalysis, protective clothing, etc.). The reported result revealed an outstanding correlation between values of elastic modulus derived from nanoindentation and dynamic mechanical techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Functional nanofibrous membranes fabricated by electrospinning technology have attracted much attention in the removal of heavy metal ions from contaminated wastewater. The high specific surface area, high porosity and ease of functionality create an enhanced throughput and high adsorption capacity of the nanofibrous membrane. However, the relatively poor mechanical properties of the membrane with a non-woven nanofibrous structure are one of the major concerns, which can limit the applications in wastewater treatment. Different strategies and methodologies were explored to address the problems and were reviewed in this work, highlighting the possibilities of overcoming the poor mechanical properties of the nanofibrous membrane and to ensure the recyclability and reusability of the membrane during the adsorption process.  相似文献   

12.
SiO2/polyvinylidene fluoride (PVDF) composite nanofiber‐coated polypropylene (PP) nonwoven membranes were prepared by electrospinning of SiO2/PVDF dispersions onto both sides of PP nonwovens. The goal of this study was to combine the good mechanical strength of PP nonwoven with the excellent electrochemical properties of SiO2/PVDF composite nanofibers to obtain a new high‐performance separator. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber‐coated nonwoven membranes. Among the membranes with various SiO2 contents, 15% SiO2/PVDF composite nanofiber‐coated PP nonwoven membranes provided the highest ionic conductivity of 2.6 × 10?3 S cm?1 after being immersed in a liquid electrolyte, 1 mol L?1 lithium hexafluorophosphate in ethylene carbonate, dimethyl carbonate and diethyl carbonate. Compared with pure PVDF nanofiber‐coated PP nonwoven membranes, SiO2/PVDF composite fiber‐coated PP nonwoven membranes had greater liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PVDF composite fiber‐coated PP nonwoven membrane separators were assembled into lithium/lithium iron phosphate cells and demonstrated high cell capacities and good cycling performance at room temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1719–1726  相似文献   

13.
In the present work, nanofibrous composite polymer electrolytes consist of polyethylene oxide (PEO), ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate (LiClO4), and titanium dioxide (TiO2) were designed using response surface method (RSM) and synthesized via an electrospinning process. Morphological properties of the as‐prepared electrolytes were studied using SEM. FTIR spectroscopy was conducted to investigate the interaction between the components of the composites. The highest room temperature ionic conductivity of 0.085 mS.cm?1 was obtained with incorporation of 0.175 wt. % TiO2 filler into the plasticized nanofibrous electrolyte by EC. Moreover, the optimum structure was compared with a film polymeric electrolyte prepared using a film casting method. Despite more amorphous structure of the film electrolyte, the nanofibrous electrolyte showed superior ion conductivity possibly due to the highly porous structure of the nanofibrous membranes. Furthermore, the mechanical properties illustrated slight deterioration with incorporation of the TiO2 nanoparticles into the electrospun electrolytes. This investigation indicated the great potential of the electrospun structures as all‐solid‐state polymeric electrolytes applicable in lithium ion batteries.  相似文献   

14.
Despite promising filtration abilities, low mechanical properties of extraordinary porous electrospun nanofibrous membranes could be a major challenge in their industrial development. In addition, such kind of membranes are usually hydrophobic and non-wettable. To reinforce an electrospun nanofibrous membrane made of polyethersulfone (PES) mechanically and chemically (to improve wettability), zirconia nanoparticles as a novel nanofiller in membrane technology were added to the nanofibers. The compressive and tensile results obtained through nanoindentation and tensile tests, respectively, implied an optimum mechanical properties after incorporation of zirconia nanoparticles. Especially compaction resistance of the electrospun nanofibrous membranes improved significantly as long as no agglomeration of the nanoparticles occurred and the electrospun nanocomposite membranes showed a higher tensile properties without any brittleness i.e. a high ductility. Noteworthy, for the first time the compaction level was quantified through a nanoindentation test. In addition to obtaining a desired mechanical performance, the hydrophobicity declined. Combination of promising properties of optimum mechanical and surface chemical properties led to a considerably high water permeability also retention efficiency of the nanocomposite PES nanofibrous membranes. Such finding implies a longer life span and lower energy consumption for a water filtration process.  相似文献   

15.
Aligned poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL)/hydroxyapaite (HA) composite fibrous membranes were fabricated by electrospinning. Their morphology, thermal stability, mechanical properties, hydrophilic properties and biocompatibility were investigated. The electrospun fibers are highly aligned and the HA are oriented along the fiber axis. When HA are incorporated, the PLLA/PCL/HA composite fibers become thinner due to the increased conductivity. In addition, the aligned HA reinforce the electrospun fibrous membranes. The larger porosity and higher hydrophilic properties induced by HA in the electrospun fibers have improved the degradation of the PLLA/PCL/HA fibrous membranes which have no toxic effect on proliferation of adipose-derived stem cells.  相似文献   

16.
以聚对苯二甲酸二醇酯(PET)无纺布为基底,聚偏氟乙烯(PVDF)纳米纤维为支撑层,聚乙烯醇(PVA)纳米纤维膜为分离层,采用静电纺丝法制备超滤膜,并用水/丙酮混合溶液对复合纳米纤维膜表面进行溶液处理,再加入戊二醛交联改性得到致密分离层.采用扫描电子显微镜(SEM)和红外光谱(FTIR)表征了复合超滤膜的表面,用水接触角(WCA)表征复合超滤膜的亲水性.在0.02 MPa恒压下死端过滤油/水乳液,测试复合超滤膜的过滤性能.结果表明,最优条件下制备的复合超滤膜死端过滤油/水乳液的通量为(42.50±4.78)L/(m~2·h),截留率达到(95.72±0.33)%;循环使用5次后,依然具有较好的过滤性能,常压下死端过滤复合超滤膜的纯水通量为(3469±28)L/(m~2·h).  相似文献   

17.
Fe-doped TiO2/SiO2 nanofibrous membranes with molecular imprinted modification on the surface, were fabricated and used for selective degradation of 4-nitrophenol.  相似文献   

18.
Aligned poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL)/poly(ethylene glycol)(PEG) fibrous membranes were fabricated by electrospinning. Their morphology, thermal stability, mechanical properties, hydrophilic properties and in vitro degradation behaviors were investigated. With increasing the content of PEG, the PLLA/PCL/PEG blend fibers become thinner due to the increment in solution conductivity and decrease in solution viscosity. The thermal stability, hydrophilic properties, the tensile strength and elongation-at-break of PLLA/PCL/PEG blend fibrous membranes were improved, but porosity were decreased with the content of PEG changing from 10 wt% to 30 wt%. Furthermore, the incorporation of PEG enhanced the degradation of the PLLA/PCL/PEG fibrous membranes due to the better hydrophilic properties. In addition, the PLLA/PCL/PEG fibrous membranes have no toxic effect on proliferation of adipose-derived stem cells.  相似文献   

19.
郭睿  史向阳 《高分子科学》2016,34(9):1047-1059
In this study, multiwalled carbon nanotubes (MWCNTs) were used to encapsulate a model anticancer drug, doxorubicin (Dox). Then, the drug-loaded MWCNTs (Dox/MWCNTs) with an optimized drug encapsulation percentage were mixed with poly(lactide-co-glycolide) (PLGA) polymer solution for subsequent electrospinning to form drug-loaded composite nanofibrous mats. The structure, morphology, and mechanical properties of the formed electrospun Dox/PLGA, MWCNTs/PLGA, and Dox/MWCNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the MWCNTs/PLGA fibrous scaffolds demonstrate that the developed MWCNTs/PLGA composite nanofibers are cytocompatible. The incorporation of Dox-loaded MWCNTs within the PLGA nanofibers is able to improve the mechanical durability and maintain the three-dimensional structure of the nanofibrous mats. More importantly, our results indicate that this double-container drug delivery system (both PLGA polymer and MWCNTs are drug carriers) is beneficial to avoid the burst release of the drug and able to release the antitumor drug Dox in a sustained manner for 42 days. The developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for post-operative local chemotherapy.  相似文献   

20.
利用多巴胺在溶液中自聚得到聚多巴胺(PDA)颗粒, 然后将其作为填料加入聚偏氟乙烯(PVDF)中, 采用溶液成膜法制备具有紫外线屏蔽功能的PDA/PVDF复合膜. 通过傅里叶变换红外光谱(FTIR)、 扫描电子显微镜(SEM)和紫外可见分光光度计(UV-Vis)对制备的PDA颗粒的结构、 形貌以及吸光度进行表征, 并且进一步利用X 射线衍射仪(XRD)、 差示扫描量热仪(DSC)、 热失重分析仪(TGA)、 接触角测量仪(CA)以及紫外老化箱等对PDA/PVDF复合膜的结构、 热性能、 润湿性能与紫外线屏蔽性能进行测试. 结果表明, 制备的PDA颗粒的粒径约为160 nm; 掺杂PDA之后的PVDF膜的结晶度以及接触角均减小; 并且PDA质量分数为5%时得到的PDA/PVDF复合膜在200400 nm范围内的透过率均低于1%, 能够吸收所有的紫外线, 表现出优异的紫外线屏蔽功能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号