首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel sulfonium salts [methyl‐, 2‐indany‐, or 1‐ethoxycarbonylethyl methyl‐2‐naphthylsulfonium hexafluorophosphate and 2‐indany‐, 1‐ethoxycarbonylethyl‐, 2‐methyl‐2‐phenylpropyl‐, 2‐phenylpropyl‐, 2‐phenylethyl‐, 2‐(4‐methoxyphenyl)‐ethyl‐, or 3‐(4‐methoxyphenyl)‐2‐propyl methylphenylsulfonium hexafluorophosphates] were synthesized by the reaction of dimethylsulfate and the corresponding sulfides followed by anion exchange with KPF6. These sulfonium salts could polymerize epoxy monomers at lower temperatures than previously reported for benzylsulfonium salt initiators. In particular, sulfonium salts with naphthyl groups showed higher photoactivity than already reported for di(4‐tert‐butylphenyl)iodonium and triphenylsulfonium hexafluorophosphates. These sulfonium salts showed higher activity in photoradical polymerization and photocationic polymerization. The photopolymerization was accelerated by the addition of 4‐methoxy‐1‐naphthol, N‐ethylcarbazole, 2,4‐dimethylthioxanthone, phenothiazine, and 2‐ethyl‐9,10‐dimethoxyanthracene as photosensitizers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3816–3827, 2003  相似文献   

2.
Novel pyridinium salts [N‐(α‐phenylbenzyl)‐, N‐(1‐naphthylmethyl)‐, or N‐cinnamyl p‐ or o‐cyanopyridinium hexafluoroantimonates] were synthesized by the reaction of p‐ or o‐cyanopyridine and the corresponding bromides followed by anion exchange with KSbF6. These pyridinium salts polymerized epoxy monomers at lower temperatures than previously reported for N‐benzyl‐2‐cyanopyridinium hexafluoroantimonate. The o‐substituted pyridinium salts showed higher activity than the p‐substituted ones, and the crosslinked epoxy polymers cured with these initiators showed higher glass‐transition temperatures. These pyridinium salts photoinitiated radical polymerization as well as cationic polymerization. The photopolymerization was accelerated by the addition of aromatic ketones as photosensitizers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1037–1046, 2002  相似文献   

3.
Acidic bismuth salts, such as BiCl3, BiBr3, BiJ3, and Bi‐triflate catalyzed the ring‐opening polymerization of 2‐methoxazoline (MOZ) in bulk at 100 °C, whereas less acidic salts such as Bi2O3 or Bi(III)acetate did not. Bi‐triflate‐catalyzed polymerizations of 2‐ethyloxazoline (EtOZ) were performed with variation of the monomer–catalyst ratio (M/C). It was found that the molecular weights were independent of the M/C ratio. The formation of cationic chain ends and the absence of cycles was proven by reactions of virgin polymerization products with N,N‐dimethyl‐4‐aminopyridine or triphenylphosphine. The resulting polymers having modified cationic chain ends were characterized by 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The polymerization mechanism including chain‐transfer reactions is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4777–4784, 2008  相似文献   

4.
The photoinitiated ring‐opening cationic polymerization of a monofunctional benzoxazine, 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine, with onium salts such as diphenyliodonium hexafluorophosphate and triphenylsulfonium hexafluorophosphate as initiators was examined. The structures of the polymers thus formed were complex and related to the ring‐opening process of the protonated monomer either at the oxygen or nitrogen atoms. The phenolic mechanism also contributed, but its influence decreased with decreasing monomer concentration. Thermal properties of the polymers were also investigated by differential scanning calorimetry and thermogravimetric analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3320–3328, 2003  相似文献   

5.
A new 2‐oxazolines containing S‐galactosyl substituents linked to alkyl chains of different lengths; (S‐glycooxazoline) were prepared relatively in high yields. By using a 1:1 adduct of 2‐methyl‐2‐oxazoline and methyl triflate, as the initiator, the monomer was polymerized via ring‐opening polymerization (ROP) to give products with relatively narrow molecular weight distributions. Homo‐ and copolymerization were performed, and the kinetics of these new S‐glycooxazolines in the ROP are investigated. After a quantitative deprotection, poly(2‐oxazoline)s having pendant carbohydrate were obtained. The interaction of the poly(S‐glycooxazoline) with RCA120 lectin was investigated, the binding constant between glycopolymer and lectin was increased by 102 times compared with that of the monosaccharide (D ‐galactose). The in vivo expression of green fluorescent protein using the synthesized poly(S‐glycooxazoline)s as polymeric inducers in Escherichia coli host were performed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
A novel template monomer with multiple methacryloyl groups was synthesized with β‐cyclodextrin by the acetylation of primary hydroxyl groups and the esterification of secondary hydroxyl groups with methacrylic acid anhydride. The average number of methacryloyl groups in the monomer was 11. The radical polymerization of the monomer was carried out with the following initiators: α,α′‐azobisisobutylonitrile, H2O2? Fe2+ redox initiator, p‐xylyl‐N,N‐dimethyldithiocarbamate (XDC), and α‐bromo‐p‐xylyl‐N,N‐dimethyldithiocarbamate (BXDC). When the concentration of the monomer was less than 4.12 × 10?3 M, polymerization was limited inside the molecule, and gelation of the system was hindered. For controlled radical photopolymerization with XDC and BXDC, the methacryloyl groups of the monomer were homogeneously polymerized, and poly(methacrylic acid) with a narrow molecular weight distribution was obtained by the hydrolysis of the polymerized products. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3539–3546, 2001  相似文献   

7.
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004  相似文献   

8.
In this article, a new route for the synthesis of N‐aryl heteroaromatic onium salts by the direct copper catalyzed arylation of pyridine, substituted pyridines, isoquinoline, and acridine with diaryliodonium salts is described. It was demonstrated that these N‐aryl heteroaromatic onium salts undergo facile platinum or rhodium‐catalyzed reduction by silanes bearing Si? H groups. The reduction of N‐aryl heteroaromatic onium salts generates Brønsted acids. When this redox reaction was carried out in situ in the presence of an appropriate monomer, cationic polymerization was observed. Using this approach, the cationic polymerizations of epoxides, oxetanes, 1,3,5‐trioxane, styrene, and vinyl ethers were carried out. The use of optical pyrometry to monitor the redox initiated cationic polymerizations of some representative multifunctional monomers is described. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Vinyl‐conjugated monomer (methyl acrylate, MA) and allyl 2‐bromopropanoate (ABP)‐possessing unconjugated C?C and active C? Br bonds were polymerized via the Cu(0)‐mediated simultaneous chain‐ and step‐growth radical polymerization at ambient temperature using Cu(0) as catalyst, N,N,N′,N″,N″‐pentamethyldiethylenetriamine as ligand and dimethyl sulfoxide as solvent. The conversion was reached higher than 98% within 20 h. The obtained polymers showed block structure consisting of polyester and vinyl polymer moieties. The Cu(0)‐catalyzed simultaneous chain‐ and step‐growth radical polymerization mechanism was demonstrated by NMR, matrix‐assisted laser desorption ionization time‐of‐flight, and GPC analyses. Furthermore, the obtained copolymers of MA and ABP were further modified with poly(N‐isopropylamide) through radical thiol‐ene “click” chemistry from the terminal double bond. The thermoresponsive behavior of this block copolymer was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3907–3916  相似文献   

10.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
We demonstrated that density functional theory calculations provide a reliable and quantitative prediction of the trends in C? S bond dissociation energies using several model compounds as photoinitiator. On the basis of this information, we designed a possible photofunctional initiator for the polymerization of hydrophilic vinyl monomers. Photopolymerization of 2‐hydroxyethyl methacrylate (HEMA) hydrophilic monomer was carried out in ethanol initiated by 2‐(N,N‐diethyldithiocarbamyl)isobutyric acid (DTCA) under UV irradiation. We performed the first‐order time‐conversion plots in this polymerization system, and the straight line in the semilogarithmic coordinates indicated first order in monomer. The molecular weight of the poly(2‐hydroxyethyl methacrylate) (PHEMA) increased with increasing conversion. The molecular weight distribution (Mw/Mn) of the PHEMA was about 1.5. Methyl methacrylate (MMA) could also be polymerized in a living fashion with such a PHEMA precursor as a macroinitiator because PHEMA exhibited a dithiocarbamate (DC) group at its terminal end. This system could be applied to the architecture of amphiphilic block copolymers. It was concluded that these polymerization systems proceeded with controlled radical mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 76–82, 2004  相似文献   

12.
The synthesis of ABA‐type block copolymers, involving liquid‐crystalline 6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate (LC6) and styrene (St) monomer with copper‐based atom transfer radical polymerization (ATRP) and photoinduced radical polymerization (PIRP), was studied. First, photoactive α‐methylol benzoin methyl ether was esterified with 2‐bromopropionyl bromide, and it was subsequently used for ATRP of LC6 in diphenylether in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst. The obtained photoactive functional liquid‐crystalline polymer, poly[6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate] (PLC6), was used as an initiator in PIRP of St. Similarly, photoactive polystyrenes were also synthesized and employed for the block copolymerization of LC6 in the second stage. The spectral, thermal, and optical measurements confirmed a full combination of ATRP and PIRP, which resulted in the formation of ABA‐type block copolymers with very narrow polydispersities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1892–1903, 2003  相似文献   

13.
To report a new polymerization reaction phenomenon, this article examines the polymerization of butyl vinyl ether and N‐vinylcarbazole in the presence of 2‐benzoxypentafluoropropene [CF2?C(CF3)OCOC6H5 or BPFP]. The homopolymer of butyl vinyl ether was produced in the presence of a catalytic amount of BPFP in high yields. N‐Vinylcarbazole, which is a monomer well‐known for producing its homopolymer under cationic polymerization conditions, also yielded its homopolymer in the presence of BPFP. It was concluded that some cationic species would be yielded by the addition of BPFP. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 908–910, 2007.  相似文献   

14.
Atom transfer radical polymerization (ATRP) of acrylates in ionic liquid, 1‐butyl‐3‐methylimidazolium hexaflurophospate, with the CuBr/CuBr2/amine catalytic system was investigated. Sequential polymerization was performed by synthesizing AB block copolymers. Polymerization of butyl acrylate (monomer that is only partly soluble in an ionic liquid forming a two‐phase system) proceeded to practically quantitative conversion. If the second monomer (methyl acrylate) is added at this stage, polymerization proceeds, and block copolymer formed is essentially free of homopolymer according to size exclusion chromatographic analysis. The number‐average molecular weight of the copolymer is slightly higher than calculated, but the molecular weight distribution is low (Mw/Mn = 1.12). If, however, methyl acrylate (monomer that is soluble in an ionic liquid) is polymerized at the first stage, then butyl acrylate in the second‐stage situation is different. Block copolymer free of homopolymer of the first block (with Mw/Mn = 1.13) may be obtained only if the conversion of methyl acrylate at the stage when second monomer is added is not higher than 70%. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis confirmed that irreversible deactivation of growing macromolecules is significant for methyl acrylate polymerization at a monomer conversion above 70%, whereas it is still not significant for butyl acrylate even at practically quantitative conversion. These results show that ATRP of butyl acrylate in ionic liquid followed by addition of a second acrylate monomer allows the clean synthesis of block copolymers by one‐pot sequential polymerization even if the first stage is carried out to complete conversion of butyl acrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2799–2809, 2002  相似文献   

15.
Cationic cyclopolymerization of 2‐methyl‐5,5‐bis(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a divinyl ether with a cyclic acetal group, was investigated with the HCl/ZnCl2 initiating system in toluene and methylene chloride at ?30 °C. The reaction proceeded quantitatively to give gel‐free, soluble polymers in organic solvents. The number‐average molecular weight (Mn) of the polymers increased in direct proportion to monomer conversion, and further increased on addition of a fresh monomer feed to the almost completely polymerized reaction mixture, indicating that the polymerization proceeded in living/controlled manner. The contents of the unreacted vinyl groups in the produced soluble polymers were less than ~3 mol %, and therefore, the degree of cyclization was determined to be ~97%. In contrast, the pendant cyclic acetal groups remained intact in the polymers under the present cationic polymerization conditions. These facts show that cyclopolymerization of 1 almost exclusively occurred and the poly(vinyl ether)s with the cyclized repeating units and cyclic pendant acetal rings were obtained. Glass transition temperature (Tg) and thermal decomposition temperature (Td) of poly( 1 ) (Mn = 7870, Mw/Mn = 1.57) were found to be 166 and 338 °C, respectively, indicating that poly( 1 ) had high Tg and high thermal stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 952–958, 2010  相似文献   

16.
Pseudo block and triblock copolymers were synthesized by the cationic ring‐opening copolymerization of 1,5,7,11‐tetraoxaspiro[5.5]undecane (SOC1) with trimethylene oxide (OX) via one‐shot and two‐shot procedures, respectively. When SOC1 and OX were copolymerized cationically with boron trifluoride etherate (BF3OEt2) as an initiator in CH2Cl2 at 25 °C, OX was consumed faster than SOC1. SOC1 was polymerized from the OX‐rich gradient copolymer produced in the initial stage of the copolymerization to afford the corresponding pseudo block copolymer, poly [(OX‐grad‐SOC1)‐b‐SOC1]. We also succeeded in the synthesis of a pseudo triblock copolymer by the addition of OX during the course of the polymerization of SOC1 before its complete consumption, which provided the corresponding pseudo triblock copolymer, poly[SOC1‐b‐(OX‐grad‐SOC1)‐b‐SOC1]. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3233–3241, 2006  相似文献   

17.
Living cationic polymerization of 4‐methyl‐7‐(2‐vinyloxyethoxy)coumarin (CMVE) was achieved using SnCl4 in the presence of nBu4NBr as an added salt at 0 °C. The number‐average molecular weight of the resulting polymers increased in direct proportion to the monomer conversion while retaining relatively low polydispersity. Structural analysis revealed that the resulting polymers carried pendant coumarinyl moieties. These coumarinyl moieties were crosslinked by irradiation with UV light at λmax = 366 nm, and the crosslinked sites were then cleaved by irradiation with UV light at λmax = 254 nm. The crosslinking behaviors of the polymers were studied by UV and FTIR spectroscopic measurement. PolyCMVE was soluble in dichloromethane but was found to be insoluble upon UV light irradiation. We also synthesized amphiphilic block polymers bearing coumarinyl moieties by living cationic copolymerization with an amphiphilic vinyl ether. The resulting block polymers were soluble in an aqueous medium and also formed micelle‐like aggregates. Upon UV irradiation of aqueous solutions above the critical micelle concentration, an efficient crosslinking reaction occurred. Photoinduced structural changes of these polymer aggregates in the solution state were further investigated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
The living cationic polymerization of 5‐ethyl‐2‐methyl‐5‐(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a vinyl ether with a cyclic acetal unit, was investigated with various initiating systems in toluene or methylene chloride at 0 to ?30 °C. With initiating systems such as hydrogen chloride (HCl)/zinc chloride (ZnCl2), isobutyl vinyl ether–acetic acid adduct [CH3CH(OiBu)OCOCH3]/tin tetrabromide (SnBr4)/di‐tert‐butylpyridine (DTBP), and CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride (Et1.5AlCl1.5)/ethyl acetate (CH3COOEt), the number‐average molecular weights (Mn's) of the obtained poly( 1 )s increased in direct proportion to the monomer conversion and produced polymers with relatively narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.2–1.3]. To investigate the living nature of the polymerization with CH3CH(OiBu)OCOCH3/SnBr4/DTBP, a second monomer feed was added to the almost polymerized reaction mixture. The added monomer was completely consumed, and the Mn values of the polymers showed a direct increase against the conversion of the added monomer, indicating the formation of a long‐lived propagating species. The glass transition temperature and thermal decomposition temperature of poly( 1 ) (e.g., Mn = 13,600, Mw/Mn = 1.30) were 29 and 308 °C, respectively. The cyclic acetal group in the pendants of the polymer of 1 could be converted to the corresponding two hydroxy groups in a 65% yield by an acid‐catalyzed hydrolysis reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4855–4866, 2007  相似文献   

20.
Cationic polymerization of n‐butyl propenyl ether (BuPE; CH3CH CHOBu, cis/trans = 64/36) was examined with the HCl–IBVE (isobutyl vinyl ether) adduct/ZnCl2 initiating system at −15 ∼ −78 °C in nonpolar (hexane, toluene) and polar (dichloromethane) solvents, specifically focusing on the feasibility of its living polymerization. In contrast to alkyl vinyl ethers, the living nature of the growing species in the BuPE polymerization was sensitive to polymerization temperature and solvent. For example, living cationic polymerization of IBVE can be achieved even at 0 °C with HCl–IBVE/ZnCl2, whereas for BuPE whose β‐methyl group may cause steric hindrance ideal living polymerization occurred only at −78 °C. Another interesting feature of this polymerization is that the polymerization rate in hexane is as large as in dichloromethane, much larger than in toluene. A new method in determining the ratio of the living growing ends to the deactivated ones was developed with a devised monomer‐addition experiments, in which IBVE that can be polymerized in a living fashion below 0 °C was added to the almost completely polymerized solution of BuPE. The amount of the deactivated chain ends became small in hexane even at −40 °C in contrast to other solvents. Thus hexane turned out an excellent solvent for living cationic polymerization of BuPE. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 229–236, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号