首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
负载金属镧的壳聚糖对氟离子的吸附动力学   总被引:5,自引:0,他引:5  
利用负载金属镧的壳聚糖对含氟水进行吸附处理.该除氟剂的最佳吸附条件:pH值为7,温度为323K,吸附时间为60min.吸附剂对F的吸附过程符合Langmuir等温线方程,对F的饱和吸附容量为476.190mg/g.吸附动力学符合拟二级速率方程,颗粒内扩散过程和液膜形成的边界层是吸附过程的主要限速步骤.  相似文献   

2.
The adsorption of carboxymethyl starch (CMS) at the alpha-alumina/aqueous solution interface has been investigated through adsorption studies, electrokinetics mobility measurements, and FTIR spectroscopy. Zeta potential measurements show that the addition of CMS results in a more dramatic increase in the absolute zeta potential in the alkaline region, as well as a shift of the isoelectric point to lower values, indicating the adsorption of CMS from the aqueous solution onto the alumina surface. The positive hydrophilic surface sites of alumina are responsible for the adsorption of CMS molecules. The adsorption of CMS is possible after charge reversal by the addition of excess CMS. Nearly 30 min of contact time are found to be sufficient for the adsorption of CMS to reach equilibrium. CMS adsorption follows a Langmuir isotherm with adsorption capacities of 91.74 mg CMS per gram of alpha-alumina. For the adsorption of CMS, pseudo-second-order chemical reaction kinetics provides the best correlation with the experimental data. FTIR analysis indicated that CMS forms outer complexes with alumina surfaces depending on the shifting of the asymmetric and symmetric bands.  相似文献   

3.
以大孔吸附树脂D3520对豆腐柴叶色素的吸附行为为研究对象,对色素的吸附平衡和吸附动力学进行研究,以Langmuir公式拟合25□下的吸附等温线,结果表明:D3520树脂对色素吸附规律较好的符合Langmuir吸附等温式.  相似文献   

4.
The adsorption/desorption equilibria of water vapor in a carbon molecular sieve (CMS) membrane and a commercial CMS adsorbent were determined, exhibiting S-shaped, type V isotherms. The fits of several models found in the literature to the experimental data were evaluated. The results obtained led to the development of a new model accounting for both adsorption and desorption and essentially based on the work of Lagorsse et al. (2005) [15]. Furthermore, the adsorption kinetics was also assessed for both materials and well described by a linear driving force model. The existence of hydrophilic groups responsible for water vapor adsorption in such carbonaceous materials has been related to the surface chemistry by means of X-ray microanalysis and by thermogravimetry. It was concluded from X-ray microanalyses that the carbon membrane presents a lower C/O ratio and is thus more sensitive towards water vapor exposure, as evidenced by the measured water adsorption at lower relative pressures. It was also observed that the diffusion rates are higher for the CMS membrane than for the CMS adsorbent.  相似文献   

5.
Single and multicomponent batch adsorption kinetics were obtained for deamidated mAb variants on two commercial cation exchangers, one with an open macroporous structure--UNOsphere S--and the other with charged dextran grafts--Capto S. The adsorption kinetics for the macroporous matrix was found to be controlled largely by pore diffusion. The effective diffusivity estimated from single component data was a fraction of the mAb free solution diffusivity, and its value could be used to accurately predict the adsorption kinetics for two- and three-component systems. In this case, when two or more variants were adsorbed simultaneously, both experimental and predicted results showed a temporary overshoot of the amount adsorbed above the equilibrium value for the more deamidated variant followed by a gradual approach to equilibrium. Adsorption rates on the dextran grafted material were much faster than those observed for the macroporous matrix for both single component and simultaneous adsorption cases. In this case, no significant overshoot was observed for the more deamidated forms. The Capto S adsorption kinetics could be described well by a diffusion model with an adsorbed phase driving force for single component adsorption and for the simultaneous adsorption of multiple variants. However, this model failed to predict the adsorption kinetics when more deamidated forms pre-adsorbed on the resin were displaced by less deamidated ones. In this case, the kinetics of the displacement process was much slower indicating that the pre-adsorbed components severely hindered transport of the more strongly bound variants. Overall, the results indicate that despite the lower capacity, the macroporous resin may be more efficient in process applications where displacement of one variant by another takes place as a result of the faster and more predictable kinetics.  相似文献   

6.
孔秀  刘耀驰 《化学通报》2015,78(12):1138-1144
通过静态试验研究了土壤对正丁基黄原酸钾的吸附性能和影响因素,以及正丁基黄原酸钾-铅复合污染体系的吸附平衡与动力学特征。结果表明,土壤对正丁基黄原酸钾的吸附过程遵循Lagergren二级动力学模型,等温吸附可用Freundlich模型拟合,提高温度有利于吸附,土壤对正丁基黄原酸钾的吸附属于内扩散控制过程;土壤吸附正丁基黄原酸钾最佳p H范围为5~9,p H较低时正丁基黄原酸钾易被酸解,碱性环境(p H10)将抑制土壤对正丁基黄原酸钾的吸附;正丁基黄原酸钾与Pb2+形成难溶络合物而严重影响了Pb2+在土壤中的吸附,使Pb2+的吸附速率常数由38.319g/(mg·min)提高到70.350g/(mg·min),平衡吸附量(qe)由1.909mg/g降低到1.385mg/g,且影响程度随着Pb2+浓度的升高而减弱。  相似文献   

7.
Mucor rouxii biomass (MRB) was found to be most potent sorbent for the removal of copper from its aqueous solution. Maximum adsorption was noted within pH range 5.0-6.0, and the process follows Langmuir adsorption isotherm (r2=0.998). Adsorption process is very fast initially and reaches equilibrium very quickly following pseudo second order rate kinetics. Amino, carboxyl and phosphate groups present on the cell surface of the biomass are involved in chemical interaction with copper ion as revealed from FTIR and SEM-EDX study and also by blocking experiments. Both SEM and AFM micrographs revealed the formation of metal nanostructure on the biomass surface due to copper adsorption. Biomass surface modification indicates the major involvement of amino functional group for the binding probably through the chelation. Copper ion can be eluted from the adsorbed biomass with 0.1M hydrochloric acid.  相似文献   

8.
Adsorption of Cu(II) from aqueous solution onto H(3)PO(4)-activated carbon using rubber wood sawdust (RSAC) was investigated in a batch system. Kinetic and isotherm studies were carried out by considering the effects of various parameters, such as initial concentration, contact time, pH, and temperature. The optimal pH value for Cu(II) adsorption onto RSAC was found to be 6.0. Thermodynamic parameters such as standard Gibbs free energy (DeltaG(0)), standard enthalpy (DeltaH(0)), and standard entropy (DeltaS(0)) were evaluated by applying the Van't Hoff equation. The thermodynamics of Cu(II) adsorption onto RSAC indicates its spontaneous and exothermic nature. Langmuir, Freundlich, and Temkin isotherms were used to analyze the equilibrium data at different temperatures. The Langmuir isotherm fits the experimental data significantly better than the other isotherms. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The initial sorption rate, pseudo-first-order, pseudo-second-order, and intraparticle diffusion rate constants for different initial concentrations were evaluated and discussed. Adsorption mechanism studies revealed that the process was complex and followed both surface adsorption and particle diffusion. The rate-controlling parameter and effective diffusion coefficient were determined using the Reichenberg plot. It was found that the adsorption occurs through film diffusion at low concentrations and at higher concentration the particle diffusion becomes the rate-determining step.  相似文献   

9.
The mesoporous carbon CMK-3 adsorbent was prepared, characterized, and used for the removal of anionic methyl orange dye from aqueous solution. Adsorption experiments were carried out as batch studies at different contact time, pH, initial dye concentration, and salt concentration. The dye adsorption equilibrium was rapidly attained after 60 min of contact time. Removal of dye in acidic solutions was better than in basic solutions. The adsorption of dye increased with increasing initial dye concentration and salt concentration. The equilibrium data were analyzed by the Langmuir and Freundlich models, which revealed that Langmuir model was more suitable to describe the methyl orange adsorption than Freundlich model. Experimental data were analyzed using pseudo-first-order and pseudo-second-order kinetic models. It was found that kinetics followed a pseudo-second-order equation. Thermodynamic study showed that the adsorption was a spontaneous and exothermic process.  相似文献   

10.
In this paper, adsorption equilibrium and kinetics of three reactive dyes from their single-component aqueous solutions onto activated carbon were studied in a batch reactor. Effects of the initial concentration and adsorbent particle size on adsorption rate were investigated Adsorption equilibrium data were then correlated with several well-known equilibrium isotherm models. The kinetic data were fitted using the pseudo-first-order equation, the pseudo-second-order equation, and the intraparticle diffusion model. The respective characteristic rate constants were presented. A new adsorption rate model based on the pseudo-first-order equation has been proposed to describe the experimental data over the whole adsorption process. The results show that the modified pseudo-first-order kinetic model generates the best agreement with the experimental data for the three single-component adsorption systems.  相似文献   

11.
Separation of olefin/paraffin is an energy-intensive and difficult separation process in petrochemical industry. Energy-efficient adsorption process is considered as a promising alternative to the traditional cryogenic distillation for separating olefin/paraffin mixtures. In this work, we explored the feasibility of adsorptive separation of olefin/paraffin mixtures using a magnesium-based metal-organic framework, Mg-MOF-74. Adsorption equilibria and kinetics of ethane, ethylene, propane, and propylene on a Mg-MOF-74 adsorbent were determined at 278, 298, and 318 K and pressures up to 100 kPa. A dual-site Sips model was used to correlate the adsorption equilibrium data, and a micropore diffusion model was applied to extract the diffusivities from the adsorption kinetics data. A grand canonical Monte Carlo simulation was conducted to calculate the adsorption isotherms and to elucidate the adsorption mechanisms. The simulation results showed that all four adsorbate molecules are preferentially adsorbed on the open metal sites where each metal site binds one adsorbate molecule. Propylene and propane have a stronger affinity to the Mg-MOF-74 adsorbent than ethane and ethylene because of their significant dipole moments. Adsorption equilibrium selectivity, combined equilibrium and kinetic selectivity, and adsorbent selection parameter for pressure swing adsorption processes were estimated. The relatively high values of adsorption selectivity suggest that it is feasible to separate ethylene/ethane, propylene/propane, and propylene/ethylene pairs in a vacuum swing adsorption process using Mg-MOF-74 as an adsorbent.  相似文献   

12.
The adsorption of water-soluble alkane thiols and their corresponding disulfides onto gold was followed in real time using highly sensitive surface conductivity measurements. Particular attention was paid to producing clean surfaces and to the purity of the adsorbates. The rate of mass transport to the surface was constant, controlled, and measured, over the whole time course of the experiment (1-10(4) s), by convective diffusion. An adsorption rate equation derived for coupled steady state convective-diffusion mass transport and Langmuir kinetics shows that systems limited by mass transport must also be slowed by Langmuir kinetics. Thiols and disulfides adsorbed at the same rate, limited mainly by mass transport. The distinct slowdown in adsorption rate for longer alkanethiols, attributed to conformational transitions (lying down → standing up), was less evident for the neutral thiols/disulfides. The slower rate of charged thiol adsorption is thought to stem from steric interactions of large, hydrated tail groups, although calcium as a counterion accelerated monolayer formation. The adsorption kinetics of a charged thiol were almost the same under screened (by extra added salt) or unscreened conditions. Therefore, long-range electrostatic interactions appear to be less important than short-range steric ones in limiting adsorption rates at surfaces.  相似文献   

13.
Adsorption kinetics, adsorption isotherms and surface complexation of trimesic acid onto alpha-alumina surfaces were investigated. Adsorption kinetics of trimesic acid with an initial concentration of 0.5 mM onto alpha-alumina surfaces were carried out in batch method in presence of 0.05 mM NaCl (aq) at pH 6 and 298.15, 303.15 and 313.15 K. Adsorption isotherms were carried out at 298.15 K, pH 5-9, and 0.05 mM NaCl (aq) by varying trimesic acid concentration from 0.01 to 0.6 mM. Three kinetics equations such as pseudo-first-order, pseudo-second-order and Ho equations were used to estimate the kinetics parameters of the adsorption of trimesic acid on the alpha-alumina surfaces. Ho equation fits the experimental kinetics data significantly better and the estimated equilibrium concentration is in excellent agreement with the experimental value. The adsorption data were fitted to Freundlich and Langmuir adsorption model and the later best fits the adsorption isotherms. Comparison of adsorption density of trimesic acid with that of benzoic and phthalic acids follows the sequence: benzoic acid < trimesic acid < phthalic acid. The negative activation energy and the Gibbs free energy for adsorption indicate that the adsorption of trimesic acid onto alpha-alumina is spontaneous and facile. DRIFT spectroscopic studies reveal that trimesate forms outer-sphere complexes with the surface hydroxyl groups that are generated onto alpha-alumina surfaces in the pH range of the study.  相似文献   

14.
Equilibrium (based on Henry constants) and kinetic (based on relaxation‐time constants or rather macropore transport diffusivities) selectivities for commercial zeolite and carbon‐molecular‐sieve (CMS) adsorbents were compared. Adsorption isotherms were recorded at ?20°. The frequency‐response (FR) sorption‐rate spectra were determined in the range of ?78 and 70° at 133 Pa. In particles of a larger size than 1.0 mm, macropore diffusion governed the rate of sorption mass transport in both types of microporous materials. The differences in the intercrystalline diffusivities established the kinetic separation of the gases notwithstanding the essential importance of interactions in the micropores. Zeolites seem to be more advantageous for a dynamic separation of CO2 and CH4 than CMS 4A. With the CO2 and CO pair, the CMS is characterized by short characteristic times which, together with a good separation factor, is a double advantage in a short‐cycle adsorption technology. Upon comminution of the carbon pellets, intercrystalline‐diffusion resistance can be completely removed by using CMS 4A adsorbent particles with a diameter smaller than 1 mm. The carbonization of spruce‐wood cubes resulted in an excellent carbon honeycomb structure, which seems to be ideal from a dynamic point of view for applications in short‐cycle adsorption‐separation technologies. In the development of adsorbents, the use of the FR method can be beneficial.  相似文献   

15.
肖谷清  王姣亮  龙立平  蔡玲 《应用化学》2010,27(12):1451-1456
采用分步悬浮聚合法制备了聚二乙烯基苯/聚丙烯酸甲酯(PDVB/PMA)大孔互穿聚合物网络,将其中的聚丙烯酸甲酯转化为聚丙烯酸,得到具有疏水/亲水性能的聚二乙烯基苯/聚丙烯酸(PDVB/PAA)大孔互穿聚合物网络(IPN),研究了这类疏水/亲水大孔PDVB/PAA IPN对苯胺的吸附热力学和吸附动力学,测定了该树脂的孔结构、含水量、弱酸交换量和溶胀性能;测定了该树脂对苯胺在不同温度下的吸附等温线,利用热力学函数关系计算了吸附焓、自由能和熵。 红外光谱显示,成功合成了疏水/亲水PDVB/PAA IPN,与PDVB、PDVB/PMA IPN树脂相比,其BET表面积以及孔容均减小,含水量为62.73%,弱酸交换量为1.91 mmol/g;对苯胺的吸附为放热、自发的过程;溶胀实验、静态解吸实验表明,PDVB/PAA IPN树脂中疏水性的PDVB网具有疏水作用吸附能力,亲水性的PAA网具有氢键作用吸附能力。 对苯胺的吸附在90 min时即可达到吸附平衡,树脂吸附苯胺符合一级速率方程,吸附速率主要受颗粒内扩散的控制,同时还受液膜扩散的影响,吸附动力学可采用HSDM模型描述。  相似文献   

16.
利用同位素跳跃技术,对CO/Rh体系详细研究了不同温度下,气相压强使表面达饱和吸附时的绝对脱附速度与表面覆盖度的关系以及表面饱和覆盖度与表面温度的关系。首次找到了此条件下表面饱和覆盖度与表面温度的函数关系。发现了绝对脱附速度随饱和覆盖度的降低而增加的经验规律。由于在此条件下,绝对脱附速度等于绝对吸附速度,从而推导出绝对脱附速度与表面饱和覆盖度的关系。文献中未曾报导过把脱附动力学与化学吸附平衡相关联的实验结果。获得的经验规律对探讨吸附过程中的吸脱附以及交换机理提供了强有力的实验依据。  相似文献   

17.
A new biosorbent for removing toxic metal ions from water/industrial wastewater has been investigated using by-product lignin from paper production. Lignin was extracted from black liquor waste, characterized and utilized for the removal of copper and cadmium from aqueous solutions in single, binary and multi-component systems. Adsorption studies were conducted at different temperatures, lignin particle sizes, pHs and solid to liquid ratios. All the studies were conducted by a batch method to determine equilibrium and kinetic parameters. The Langmuir and Freundlich isotherm models were applied. The Langmuir model fits best the equilibrium isotherm data. The maximum lignin adsorption capacities at 25 degrees C were 87.05 mg/g (1.37 mmol/g) and 137.14 mg/g (1.22 mmol/g) for Cu(II) and Cd(II), respectively. Adsorption of Cu2+ (68.63 mg/g at 10 degrees C and 94.68 mg/g at 40 degrees C) and Cd2+ (59.58 mg/g at 10 degrees C and 175.36 mg/g at 40 degrees C) increased with an increase in temperature. Copper and cadmium adsorption followed pseudo-second order rate kinetics. From kinetic studies, various rate and thermodynamic parameters such as effective diffusion coefficients, activation energy, and activation entropy were evaluated. Adsorption occurs through a particle diffusion mechanism at temperatures 10 and 25 degrees C while at 40 degrees C it occurs through a film diffusion mechanism. The sorption capacity of black liquor lignin is higher than many other adsorbents/carbons/biosorbents utilized for the removal of Cu(II) and Cd(II) from water/wastewater in single and multi-component systems.  相似文献   

18.
This paper presents a comparative study between a carbon molecular sieve (CMS) membrane and a commercial CMS adsorbent; these materials are suited for selective gas permeation and adsorption-based gas separations, respectively. The purpose of this analysis is to better understand the mass transport mechanism in CMS membranes and how it is related to the material's structure. The structural characterization based on the adsorption of CO2 at 0 °C revealed that the adsorbent has a greater micropore volume, a smaller mean pore width and a micropore size distribution shifted to the left, when compared to the membrane. This translates into a lower adsorption capacity of the membrane towards N2, Ar, CO2 and O2 at 29.5 °C and 0–7 bar. The adsorption kinetics were also studied and the pressure-dependence of the apparent time constants established; different models were used to predict the experimental results, emphasizing the very important role of the ultramicroporosity on the properties of the materials. The CMS membrane exhibited a pore blockage effect when permeating O2 and CO2. Further morphologic characterization was performed by SEM, X-ray diffraction and mercury porosimetry.  相似文献   

19.
X. Hu  D.D. Do 《Adsorption》1996,2(3):217-225
The role of concentration-dependent surface diffusion in the adsorption kinetics of a multicomponent system is investigated in this paper. Ethane, propane and n-butane are selected as the model adsorbates and Ajax activated carbon as the model adsorbent. Adsorption equilibrium isotherm and dynamic parameters extracted from single-component systems are used to predict the ternary adsorption equilibria and kinetics. The effect of concentration-dependent surface diffusion on the adsorption kinetics predictions is studied by comparing the results of two mathematical models with the experimental data. Three diffusion mechanisms, macropore, surface and micropore diffusions are incorporated in both models. The distinction between these two models is the use of the chemical potential gradient as the driving force for the diffusion of the adsorbed species in one model and the concentration gradient in the other. It was found that the model using the chemical potential gradient provides a better prediction of the ternary adsorption kinetics data, suggesting the importance of the concentration dependency of the surface diffusion, which is implicitly reflected in the chemical potential gradient. The kinetic model predictions are also affected by the way how single-component adsorption equilibrium isotherm data are fitted.  相似文献   

20.
Phorate and Terbufos adsorption onto four tropical soils   总被引:5,自引:0,他引:5  
Adsorption of Phorate and Terbufos onto four tropical soils was investigated in this study. It was found that the adsorption kinetics was fast and that the equilibrium was established within 6 h. Adsorption isothermal data could be well described by the Freundlich equation. It was demonstrated that the soils were more favorable for the adsorption of Terbufos than Phorate, which was due to the higher hydrophobicity of Terbufos (and its lower water solubility). The presence of organic compounds in soils played an important role. A higher organic content caused higher adsorption. A new term of Koc′, the Freundlich based organic content-normalized partition coefficient Koc′=K/foc was defined. In the above equation, K and foc are the Freundlich constant and the fraction by weight of organic content in the soils, respectively. It was demonstrated that the Koc′ was independent of the types of soils (or organic content). The pH effect was found to be insignificant for the adsorption of both pesticides. Finally, a competitive study demonstrated that the presence of the more strongly adsorbed Terbufos played a more important role than that of the more weakly adsorbed Phorate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号