首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state‐of‐the‐art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble‐metal‐free OER catalysts with high performance and low cost by use of Co‐based chalcogenides.  相似文献   

2.
A one-pot synthesis of bimetallic metal–organic frameworks (Co/Fe-MOFs) was achieved by treating stoichiometric amounts of Fe and Co salts with 2-aminoterephthalic acid (NH2-BDC). Monometallic Fe (catalyst A) and Co (catalyst F) were also prepared along with mixed-metal Fe/Co catalysts (B–E) by changing the Fe/Co ratio. For mixed-metal catalysts (B–E) SEM energy-dispersive X-ray (EDX) analysis confirmed the incorporation of both Fe and Co in the catalysts. However, a spindle-shaped morphology, typically known for the Fe-MIL-88B structure and confirmed by PXRD analysis, was only observed for catalysts A–D. To test the catalytic potential of mixed-metal MOFs, reduction of nitroarenes was selected as a benchmark reaction. Incorporation of Co enhanced the activity of the catalysts compared with the parent NH2-BDC-Fe catalyst. These MOFs were also tested as electrocatalysts for the oxygen evolution reaction (OER) and the best activity was exhibited by mixed-metal Fe/Co-MOF (Fe/Co batch ratio=1). The catalyst provided a current density of 10 mA cm−2 at 410 mV overpotential, which is comparable to the benchmark OER catalyst (i.e., RuO2). Moreover, it showed long-term stability in 1 m KOH. In a third catalytic test, dehydrogenation of sodium borohydride showed high activity (turnover frequency=87 min−1) and hydrogen generation rate (67 L min−1 g−1 catalyst). This is the first example of the synthesis of bimetallic MOFs as multifunctional catalysts particularly for catalytic reduction of nitroarenes and dehydrogenation reactions.  相似文献   

3.
In situ detection of highly-oxidized metal intermediates is the key to identifying the active center of an oxygen evolution reaction (OER) catalyst, but it remains challenging for NiFe-based catalysts in an aqueous solution under working conditions. Here, by utilizing the dynamic stability of the FeVIO42− intermediates in a self-healing water oxidation cycle of NiFe-based catalyst, the highly-oxidized FeVI intermediates leached into the electrolyte are directly detected by simple spectroelectrochemistry. Our results provide direct evidence that Fe is the active center in NiFe-based OER catalysts. Furthermore, it is revealed that the incorporation of Co into NiFe-based catalyst facilitates the formation of FeVI active species, thus enhancing the OER activity of NiCoFe-based catalyst. The insights into the mechanisms for the sustainable generation of FeVI active species in these NiFe-based catalysts lay the foundation for the design of more efficient and stable OER catalysts.  相似文献   

4.
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2, our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm−2, suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru.  相似文献   

5.
Electrochemical water splitting is one of the potential approaches for making renewable energy production and storage viable. The oxygen evolution reaction (OER), as a sluggish four-electron electrochemical reaction, has to overcome high overpotential to accomplish overall water splitting. Therefore, developing low-cost and highly active OER catalysts is the key for achieving efficient and economical water electrolysis. In this work, Fe-doped NiMoO4 was synthesized and evaluated as the OER catalyst in alkaline medium. Fe3+ doping helps to regulate the electronic structure of Ni centers in NiMoO4, which consequently promotes the catalytic activity of NiMoO4. The overpotential to reach a current density of 10 mA cm−2 is 299 mV in 1 m KOH for the optimal Ni0.9Fe0.1MoO4, which is 65 mV lower than that for NiMoO4. Further, the catalyst also shows exceptional performance stability during a 2 h chronopotentiometry testing. Moreover, the real catalytically active center of Ni0.9Fe0.1MoO4 is also unraveled based on the ex situ characterizations. These results provide new alternatives for precious-metal-free catalysts for alkaline OER and also expand the Fe-doping-induced synergistic effect towards performance enhancement to new catalyst systems.  相似文献   

6.
Notwithstanding that RuO2 is a promising catalyst for the oxygen evolution reaction (OER), a plethora of fundamental details on its catalytic properties are still elusive, severely limiting its large-scale deployment. It is also established experimentally that corrosion and wettability of metal oxides can, in fact, enhance the catalytic activity for OER owing to the formation of a hydrated surface layer. However, the mechanistic interplay between surface wettability, interfacial water dynamics and OER across RuO2, and what degree these processes are correlated are still debated. Herein, spin-polarized Density Functional Theory Molecular Dynamics (DFT-MD) simulations, coupled with advanced enhanced sampling methods in the well-tempered metadynamics framework, are applied to gain a global understanding of RuO2 aqueous interface (explicit water solvent) in catalyzing the OER, and hence possibly help in the design of novel catalysts in the context of photochemical water oxidation. The present study quantitatively assesses the free-energy barriers behind the OER at the (110)-RuO2 catalyst surface revealing plausible pathways composing the reaction network of the O2 evolution. In particular, OER is investigated at room temperature when such a surface is exposed to both gas-phase and liquid-phase water. Albeit a unique efficient pathway has been identified in the gas-phase OER, a surprisingly lowest-free-energy-requiring reaction route is possible when (110)-RuO2 is in contact with explicit liquid water. By estimating the free-energy surfaces associated to these processes, we reveal a noticeable water-assisted OER mechanism which involves a crucial proton-transfer-step assisted by the local water environment. These findings pave the way toward the systematic usage of DFT-MD coupled with metadynamics techniques for the fine assessment of the activity of catalysts, considering finite-temperature and explicit-solvent effects.  相似文献   

7.
Transition-metal selenides are emerging as alternative bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR); however, their activity and stability are still less than desirable. Herein, ultrafine Co0.85Se nanoparticles encapsulated into carbon nanofibers (CNFs), Co0.85Se@CNFs, is reported as an integrated bifunctional catalyst for OER and ORR. This catalyst exhibits a low OER potential of 1.58 V vs. reversible hydrogen electrode (RHE) (EJ=10, OER) to achieve a current density (J) of 10 mA cm−2 and a high ORR potential of 0.84 V vs. RHE (EJ=−1, ORR) to reach −1 mA cm−2. Thus, the potential between EJ=10, OER and EJ=−1, ORR is only 0.74 V, indicating considerable bifunctional activity. The excellent bifunctionality can be attributed to high electronic conduction, abundant electrochemically active sites, and the synergistic effect of Co0.85Se and CNFs. Furthermore, this Co0.85Se@CNFs catalyst displays good cycling stability for both OER and ORR. This study paves a new way for the rational design of hybrid catalysts composed of transition-metal selenides and carbon materials for efficiently catalyzing OER and ORR.  相似文献   

8.
The proper utilization of renewable energy sources has emerged as a major challenge in our pursuit of a sustainable and carbon-neutral energy landscape. Small molecule activation is a key component for proper utilization of renewable energy resources, where O2/H2O redox couple is reckoned to be a potential game changer. In this regard, electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have become the prime interest of catalyst designers. Typically, these ORR and OER electrocatalysts are developed distinctly; however, very soon, the requirement of a bidirectional ORR/OER electrocatalyst becomes obvious for practical applicability and rapid energy transduction purposes. A bidirectional catalyst is defined as a catalyst capable of driving a redox reaction in opposing directions. This review has portrayed the development of enzyme structure-inspired design of molecular bidirectional ORR/OER catalysts. The strategic incorporation of secondary and outer coordination sphere features has significantly enhanced the performance of these catalysts, which can be monitored via the key catalytic parameters. These bifunctional OER/ORR catalysts are vital for metal-air battery and fuel cell applications and appropriately poised to lay the foundation for an efficient, economical, and eco-friendly pathway for sustainable energy usage with the rational assembly of energy converting and storage devices.  相似文献   

9.
Implementing sustainable energy conversion and storage technologies is highly reliant on crucial oxygen electrocatalysis, such as the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, the pursuit of low cost, energetic efficient and robust bifunctional catalysts for OER and ORR remains a great challenge. Herein, the novel Na-ion-deficient Na2−xCoP2O7 catalysts are proposed to efficiently electrocatalyze OER and ORR in alkaline solution. The engineering of Na-ion deficiency can tune the electronic structure of Co, and thus tailor the intrinsically electrocatalytic performance. Among the sodium cobalt phosphate catalysts, the Na1.95CoP2O7 (NCPO5) catalyst exhibits the lowest ΔE (EJ10,OER−EJ−1,ORR) of only 0.86 V, which favorably outperforms most of the reported non-noble metal catalysts. Moreover, the Na-ion deficiency can stabilize the phase structure and morphology of NCPO5 during the OER and ORR processes. This study highlights the Na-ion deficient Na2−xCoP2O7 as a promising class of low-cost, highly active and robust bifunctional catalysts for OER and ORR.  相似文献   

10.
The oxygen evolution reaction (OER) is key to renewable energy technologies such as water electrolysis and metal–air batteries. However, the multiple steps associated with proton-coupled electron transfer result in sluggish OER kinetics and catalysts are required. Here we demonstrate that a novel nitride, Ni2Mo3N, is a highly active OER catalyst that outperforms the benchmark material RuO2. Ni2Mo3N exhibits a current density of 10 mA cm−2 at a nominal overpotential of 270 mV in 0.1 m KOH with outstanding catalytic cyclability and durability. Structural characterization and computational studies reveal that the excellent activity stems from the formation of a surface-oxide-rich activation layer (SOAL). Secondary Mo atoms on the surface act as electron pumps that stabilize oxygen-containing species and facilitate the continuity of the reactions. This discovery will stimulate the further development of ternary nitrides with oxide surface layers as efficient OER catalysts for electrochemical energy devices.  相似文献   

11.
Increasing energy demands have stimulated intense research activities on reversible electrochemical conversion and storage systems with high efficiency, low cost, and environmental benignity. It is highly challenging but desirable to develop efficient bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A universal and facile method for the development of bifunctional electrocatalysts with outstanding electrocatalytic activity for both the ORR and OER in alkaline medium is reported. A mixture of Pt/C catalyst with superior ORR activity and a perovskite oxide based catalyst with outstanding OER activity was employed in appropriate ratios, and prepared by simple ultrasonic mixing. Nanosized platinum particles with a wide range of platinum to oxide mass ratios was realized easily in this way. The as‐formed Pt/C–oxide composites showed better ORR activity than a single Pt/C catalyst and better OER activity than a single oxide to bring about much improved bifunctionality (ΔE is only ≈0.8 V for Pt/C–BSCF; BSCF=Ba0.5Sr0.5Co0.8Fe0.2O3?δ), due to the synergistic effect. The electronic transfer mechanism and the rate‐determining step and spillover mechanism were two possible origins of such a synergistic effect. Additionally, the phenomenon was found to be universal, although the best performance could be reached at different platinum to oxide mass ratios for different oxide catalysts. This work thus provides an innovative strategy for the development of new bifunctional electrocatalysts with wide application potentials in high‐energy and efficient electrochemical energy storage and conversion.  相似文献   

12.
Electrocatalytic water oxidation is critically important for a wide range of emerging energy conversion devices. Co-based metal oxides are very promising candidates as high-performance oxygen evolution reaction (OER) catalysts. Here, it is shown that chemical oxidation of layered P2-NaxCoO2 could lead to compositionally tunable P2-NaxCoO2 with high OER activity. The optimal electrocatalytic activity emerges in a narrow range of sodium concentrations with Na0·28CoO2 exhibiting the lowest overpotential of 350 mV at 10 mA/cm2 and a Tafel slope of 29 mV/dec in 0.1 M NaOH electrolyte, outperforming the benchmark RuO2 catalyst and previous LiCoO2-based electrocatalysts. Electrochemical measurements and X-ray spectroscopic investigations reveal that chemically oxidized P2-NaxCoO2 catalysts are intrinsically active toward OER, arising from the abundant oxygen vacancies, increased Co-O covalency, and enhanced conductivity after deintercalation of the Na+. Our findings provide new insights into the design and synthesis of cost-effective catalysts toward efficient and durable OER.  相似文献   

13.
We report a Cu-based metal–organic framework (MOF) decorated by CuO nanostructures as an efficient catalyst for the oxygen evolution reaction (OER). MIL-53(Cu) was synthesized by a hydrothermal approach using 1,4-bezenedicarboxylic acid as organic precursor and further annealed at 300°C to form CuO nanostructures on its surface. The produced electrocatalyst, CuO@MIL-53(Cu), was characterized using various techniques. Under alkaline conditions, the developed electrocatalyst exhibited an overpotential of 801 and 336 mV versus RHE at 10 and 1 mA cm−2, respectively. The reproducibility of the catalytic performance was validated using several electrodes. It was confirmed that the CuO hair-like nanostructures grown on MIL-53(Cu) using thermal treatment exhibit high OER activity, good kinetics and durability. CuO@MIL-53(Cu) is an economic noble-metal-free OER electrocatalyst. It has potential for application as anode material for sustainable energy technologies like batteries, fuel cells and water electrolysis.  相似文献   

14.
A simple and effective method for preparing a non-metallic ion-doped nickel-supported catalyst is reported. Using economical and recyclable fibre raw materials as carriers, nickel-supported catalysts were prepared by adsorption and reduction at room temperature. The nanoparticles dispersed and anchored on a rational support, efficiently inhibiting their aggregation and thus enhancing the catalytic activity. For the model catalytic hydrogenation of 4-nitrophenol by NaBH4, the N-B-NiP/steam-exploded poplar (SEP) and N-B-Ni5Fe5P/SEP catalysts exhibited much better catalytic performances than the other recently reported catalysts in terms of the catalytic activity (the reaction was completed within 10 min for both aforementioned catalysts), reaction rate constant (0.19 and 0.344 min?1, respectively) and the activity factor K (19 and 34.4 min?1·g?1, respectively). The catalysts showed activities for electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under ambient conditions. In general, the reported preparation method of nickel-supported catalysts is convenient, economical and environment-friendly, and is agreement with many green chemistry and sustainable development principles; further, it employs widely available starting materials.  相似文献   

15.
Highly active and durable electrocatalysts for the oxygen evolution reaction (OER) is greatly desired. Iridium oxide/graphitic carbon nitride (IrO2/GCN) heterostructures are designed with low‐coordinate IrO2 nanoparticles (NPs) confined on superhydrophilic highly stable GCN nanosheets for efficient acidic OER. The GCN nanosheets not only ensure the homogeneous distribution and confinement of IrO2 NPs but also endows the heterostructured catalyst system with a superhydrophilic surface, which can maximize the exposure of active sites and promotes mass diffusion. The coordination number of Ir atoms is decreased owing to the strong interaction between IrO2 and GCN, leading to lattice strain and increment of electron density around Ir sites and hence modulating the attachment between the catalyst and reaction intermediates. The optimized IrO2/GCN heterostructure delivers not only by far the highest mass activity among the reported IrO2‐based catalysts but also decent durability.  相似文献   

16.
The oxygen evolution reaction (OER) is key to renewable energy technologies such as water electrolysis and metal–air batteries. However, the multiple steps associated with proton‐coupled electron transfer result in sluggish OER kinetics and catalysts are required. Here we demonstrate that a novel nitride, Ni2Mo3N, is a highly active OER catalyst that outperforms the benchmark material RuO2. Ni2Mo3N exhibits a current density of 10 mA cm?2 at a nominal overpotential of 270 mV in 0.1 m KOH with outstanding catalytic cyclability and durability. Structural characterization and computational studies reveal that the excellent activity stems from the formation of a surface‐oxide‐rich activation layer (SOAL). Secondary Mo atoms on the surface act as electron pumps that stabilize oxygen‐containing species and facilitate the continuity of the reactions. This discovery will stimulate the further development of ternary nitrides with oxide surface layers as efficient OER catalysts for electrochemical energy devices.  相似文献   

17.
Highly active NiFeOx electrocatalysts for the oxygen evolution reaction (OER) suffer gradual deactivation with time owing to the loss of Fe species from the active sites into solution during catalysis. The anodic deposition of a CeOx layer prevents the loss of such Fe species from the OER catalysts, achieving a highly stable performance. The CeOx layer does not affect the OER activity of the catalyst underneath but exhibits unique permselectivity, allowing the permeation of OH? and O2 through while preventing the diffusion of redox ions through the layer to function as a selective O2‐evolving electrode. The use of such a permselective protective layer provides a new strategy for improving the durability of electrocatalysts.  相似文献   

18.
Platinum (Pt) and iridium (Ir) catalysts are well known to strongly enhance the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, respectively. Pt–Ir-based bimetallic compounds along with carbon-supported titanium oxides (C–TiO2) have been synthesized for the application as electrocatalysts in lithium oxygen batteries. Transition metal oxide-based bimetallic nanocomposites (Pt–Ir/C–TiO2) were prepared by an incipient wetness impregnation technique. The as-prepared electrocatalysts were composed of a well-dispersed homogenous alloy of nanoparticles as confirmed by X-ray diffraction patterns and Fourier transform scanning electron microscopy analyses. The electrochemical characterizations reveal that the Pt–Ir/C–TiO2 electrocatalysts were bifunctional with high activity for both ORR and OER. When applied as an air cathode catalyst in lithium-air batteries, the electrocatalyst improved the battery performance in terms of capacity, reversibility, and cycle life compared to that of cathodes without any catalysts.  相似文献   

19.
Metal-support interaction(MSI) is an efficient way in heterogeneous catalysis and electrocatalysis to modulate the electronic structure of metal for enhanced catalytic activity. However, there are still great challenges in promoting the hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) simultaneously by this way. Herein, Fe-doped Co3O4 supported Ru(Ru/FeCo) catalysts are synthesized by MSI strategies to further improve the electrocatalytic activity and sta...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号