首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Track-induced self-excited vibration is commonly encountered in EMS (electromagnetic suspension) maglev systems, and a solution to this problem is important in enabling the commercial widespread implementation of maglev systems. Here, the coupled model of the steel track and the magnetic levitation system is developed, and its stability is investigated using the Nyquist criterion. The harmonic balance method is employed to investigate the stability and amplitude of the self-excited vibration, which provides an explanation of the phenomenon that track-induced self-excited vibration generally occurs at a specified amplitude and frequency. To eliminate the self-excited vibration, an improved LMS (Least Mean Square) cancellation algorithm with phase correction (C-LMS) is employed. The harmonic balance analysis shows that the C-LMS cancellation algorithm can completely suppress the self-excited vibration. To achieve adaptive cancellation, a frequency estimator similar to the tuner of a TV receiver is employed to provide the C-LMS algorithm with a roughly estimated reference frequency. Numerical simulation and experiments undertaken on the CMS-04 vehicle show that the proposed adaptive C-LMS algorithm can effectively eliminate the self-excited vibration over a wide frequency range, and that the robustness of the algorithm suggests excellent potential for application to EMS maglev systems.  相似文献   

2.
This paper presents a robust saturation control approach for active vibration attenuation of building structures involving parameter uncertainties and input time delay. The parameter uncertainties are described in both polytopic and norm-bounded forms and represent the variations of floor masses, stiffnesses and damping coefficients. The input time delay can be time-varying within a known bound. In terms of the feasibility of certain delay-dependent linear matrix inequalities (LMIs), a state feedback controller can be designed to guarantee the robust stability and performance of the closed-loop system in the presence of parameter uncertainties, actuator saturation, and input time delay. The effectiveness of the proposed approach is investigated by numerical simulations on the vibration control of a three-storey building structure subject to seismic excitation. It is validated that the designed robust saturation controller can effectively suppress the structural vibration and keep the system stability when there are parameter uncertainties and input time delay.  相似文献   

3.
In order to improve the performance of the tuned mass damper (TMD) for machining chatter suppression, a new-type of nonlinear TMD is proposed in this paper. Compared with the common linear TMD, the nonlinear TMD is equipped with an additional series friction-spring element. The capability of the nonlinear TMD in suppressing machining chatter vibration is investigated in this paper. The harmonic balancing method (HBM) is used to estimate the frequency response function (FRF) of the machining system to which the nonlinear TMD is attached. Considering the special nature of the machining stability problem, the optimal design parameters of this nonlinear TMD are those that minimize the magnitude of the real part of the FRF of the nonlinear TMD damped machining system. This paper also demonstrates the performance of the optimally tuned nonlinear TMD for machining stability improvement by calculating the stability diagrams for the milling of the nonlinear TMD damped workpiece. The calculation results show that more than 30% improvement in the critical limiting cutting depth can be obtained, compared to the optimally tuned linear TMD.  相似文献   

4.
预载是一种有效抑制高温超导磁悬浮系统中由横向运动引起的悬浮力衰减的方法,但目前研究仅停留在概念验证阶段,尚未对影响预载效果的一些因素进行详细地分析和研究.利用高温超导磁悬浮测试系统,本文通过改变块材的冷却条件(场冷和零场冷)、悬浮高度以及轨道磁场结构、材料性能等实验研究了不同预载高度下YB-CO块材的悬浮力随横向运动次数的变化关系,得到这些因素对预载条件下悬浮力随横向运动变化情况影响的规律.结果表明,预载高度越低,由横向运动引起的悬浮力变化越快地趋于稳定,但悬浮力的稳定值也越小,并且这一现象不随冷却条件、悬浮高度、轨道磁场结构和材料性能等因素的改变而变化.  相似文献   

5.
一种高温超导磁悬浮装置   总被引:1,自引:0,他引:1  
本文介绍一个基于倒挂吸引式(EMS)原理的高温超导磁悬浮试验装置.这个装置由高温超导磁体、单臂梁金属导轨、位置传感器、控制电路等组成.绕制超导磁体线圈所用的是Bi-2223/Ag高温超导线材.超导磁体工作在激磁电流为3.2A时,在5mm的空气间隙中产生0.21T的磁通密度,与单臂梁金属导轨可产生72N的垂直悬浮力.通过引入压控电流源,利用常规的超前一滞后校正实现了该磁悬浮装置的稳定悬浮和鲁棒控制,在负载变化87.5%的情况下仍能实现超导磁悬浮装置的稳定悬浮.该试验装置首次验证了高温超导线圈的可控性问题,为进一步探索高温超导线圈用于磁悬浮轨道交通系统的可行性打下了基础.  相似文献   

6.
张研  邱天爽  任福全 《应用光学》2012,33(4):815-820
在分布式光纤传感系统定位中,传统时延估计算法常由于噪声相关性较强而失效。采用一种削弱相关噪声的改进型广义相关法,并针对系统特点,为进一步改善分布式光纤传感定位的准确度与稳定度,提出了一种先对数据按事件信号进行分帧,再采用卡尔曼滤波器对分帧时延估计结果进行跟踪的时延估计方案。系统仿真实验与实际数据测试结果均表明:提出的时延估计方案能够有效抑制强相关性的噪声,提高时延估计的准确度与稳定度。经大量现场测试,本文的方案能够有效地将时延估计误差稳定地控制在0.2个采样间隔以内,能够满足系统实际定位精度要求。  相似文献   

7.
This paper combines cubic nonlinearity and time delay to improve the performance of vibration isolation. Nonlinear dynamics properties, design methodology and isolation performance are studied for a piecewise bilinear vibration isolation system with the time-delayed cubic velocity feedback control. By the multi-scale perturbation method, the equivalent stiffness and damping are first defined to interpret the effect of feedback control loop on dynamics behaviours, such as frequency island phenomenon. Then, a design criterion is proposed to suppress the jump phenomenon induced by the saddle-node bifurcation. With the purpose of obtaining the desirable vibration isolation performance, stability conditions are obtained to find appropriate feedback parameters including gain and time delay. Last, the influence of the feedback parameters on vibration transmissibility is assessed. Results show that the strategy developed in this paper is practicable and feedback parameters are significant factors to alter dynamics behaviours, and more importantly, to improve the isolation effectiveness for the bilinear isolation system.  相似文献   

8.
基于磁悬浮作动器的自适应有源振动控制研究   总被引:2,自引:0,他引:2  
针对周期扰动提出一种基于磁悬浮作动器的非线性前馈自适应有源振动控制算法。算法中将磁悬浮作动器视为具有时变非线性的单输入输出系统,并使用径向基函数神经网络进行控制,分别采用聚类算法和随机梯度算法对其隐层中心点和输出层权值进行自适应调整。该算法摆脱了传统磁悬浮控制对模型的依赖,在正常工作条件下不需对作动器建模。仿真和实验结果表明:在单自由度主动隔振系统中,非线性自适应算法可以显著降低周期振动的能量,同时能对磁悬浮作动器的时变非线性进行有效的补偿。   相似文献   

9.
This paper undertakes a nonlinear analysis of a model for a maglev system with time-delayed feedback. Using linear analysis, we determine constraints on the feedback control gains and the time delay which ensure stability of the maglev system. We then show that a Hopf bifurcation occurs at the linear stability boundary. To gain insight into the periodic motion which arises from the Hopf bifurcation, we use the method of multiple scales on the nonlinear model. This analysis shows that for practical operating ranges, the maglev system undergoes both subcritical and supercritical bifurcations, which give rise to unstable and stable limit cycles respectively. Numerical simulations confirm the theoretical results and indicate that unstable limit cycles may coexist with the stable equilibrium state. This means that large enough perturbations may cause instability in the system even if the feedback gains are such that the linear theory predicts that the equilibrium state is stable.  相似文献   

10.
The China Spallation Neutron Source (CSNS) is a high intensity proton accelerator based facility. Its accelerator complex includes two main parts: an H- linac and a rapid cycling synchrotron (RCS). The RCS accumulates the 80 MeV proton beam and accelerates it to 1.6 GeV, with a repetition rate of 25 Hz. The AC dipole of the CSNS/RCS is operated at a 25 Hz sinusoidal alternating current which causes severe vibration. The vibration will influence the long-term safety and reliable operation of the magnet. The dipole magnet of CSNS/RCS is an active vibration equipment, which is different from the ground vibration accelerator. It is very important to design and study the dynamic characteristics of the dipole-girder system. This paper takes the AC dipole and girder as a specific model system. A method for studying the dynamic characteristics of the system is put forward by combining theoretical calculation with experimental testing. The ANSYS simulation method plays a very important role in the girder structure design stage. With this method, the mechanical resonance phenomenon was avoided in the girder design time. At the same time the dipole vibratory force will influence the other equipment through the girder. Since it is necessary to isolate and decrease the dipole vibration, a new isolator was designed to isolate the vibratory force and decrease the vibration amplitude of the magnet.  相似文献   

11.
In this paper, active control of periodic vibration is implemented using maglev actuators which exhibit inherent nonlinear behaviors. A multi-channel feedforward control algorithm is proposed to solve these nonlinear problems, in which maglev actuators are treated as single-input–single-output systems with unknown time-varying nonlinearities. A radial basis function network is used by the algorithm as its controller, whose parameters are adapted only with the model of the linear system in the secondary path. Compared with the strategies in the conventional magnetic-levitation system control as well as nonlinear active noise/vibration control, the proposed algorithm has the advantage that the nonlinear modeling procedure of maglev actuators and the usage of displacement sensors could be both avoided. Numerical simulations and real-time experiments are carried out based on a multiple-degree-of-freedom vibration isolation system. The results show that the proposed algorithm not only could efficiently compensate for the actuators’ time-varying nonlinearities, but also has the ability to greatly attenuate the energy of periodic vibration.  相似文献   

12.
Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field–cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field–cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field–cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.  相似文献   

13.
This paper developed a finite element method to perform the maglev train–bridge–soil interaction analysis with rail irregularities. An efficient proportional integral (PI) scheme with only a simple equation is used to control the force of the maglev wheel, which is modeled as a contact node moving along a number of target nodes. The moving maglev vehicles are modeled as a combination of spring-damper elements, lumped mass and rigid links. The Newmark method with the Newton–Raphson method is then used to solve the nonlinear dynamic equation. The major advantage is that all the proposed procedures are standard in the finite element method. The analytic solution of maglev vehicles passing a Timoshenko beam was used to validate the current finite element method with good agreements. Moreover, a very large-scale finite element analysis using the proposed scheme was also tested in this paper.  相似文献   

14.
This work examines the characteristics of a unique active vibration isolator and develops a control strategy for it. The proposed active vibration isolator is introduced and its dynamic model is presented. A characterization study is conducted to identify system parameters. It is shown that with a simple proportional feedback the closed-loop system has a very narrow stability margin due to the inherent dynamics of the actuator. To improve the stability of the closed-loop system and enhance the performance of vibration isolation, a phase compensator is incorporated in the control scheme. An optimization problem is formulated to determine the optimum controller parameters by minimizing the 2nd norm of the displacement transmissibility. Both absolute position feedback and relative position feedback are considered. In real time implementation, an automatic on/off switching strategy is devised to take full advantage of both the active isolator and passive isolator. The experimental results show that with the proposed control scheme, the isolator is capable of suppressing base excitations effectively.  相似文献   

15.
A vibration control scheme integrating a passive mass–spring resonator and a linear actuator is developed. A control algorithm is devised to convert the actuator into an additional set of virtual mass–spring structure of programmable characteristic frequency. The relative motion between the primary body and the reaction mass is measured, as well as the acceleration of the reaction mass. This hybrid dynamic vibration absorber is capable of neutralizing a harmonic disturbance regardless of the detailed dynamics of the primary structure and other passive elements. Stability analysis leads to a simple, explicit stability criterion. Distribution of the counter-disturbance force between the active and passive devices is analyzed, and the transient performance is also investigated. Real-time experiments as well as numerical simulations are conducted to confirm the effectiveness of the proposed scheme.  相似文献   

16.
高温超导磁浮列车运行在高速状态,要受到环境振动、电磁激扰、轨道不平顺等问题,由此带来的运行损耗与高温超导接头电阻损耗等自身损耗相互叠加,使得高温超导磁体难以实现恒流运行.因此,本文基于近年来快速发展的非接触传能技术,提出了一种无漏热高温超导磁体非接触补偿供电方案,从理论上建立等效电路模型进行阻抗匹配,确定系统最优参数,同时利用搭建的实验测试平台研究了不同传输间距、不同负载的供电效率,证实了非接触传能技术用于现代轨道交通中高温超导磁体供电补偿的可行性.  相似文献   

17.
This paper investigates the friction-induced instability and the resulting self-excited vibration of a propeller–shaft system supported by water-lubricated rubber bearing. The system under consideration is modeled with an analytical approach by involving the nonlinear interaction among torsional vibrations of the continuous shaft, tangential vibrations of the rubber bearing and the nonlinear friction acting on the bearing–shaft contact interface. A degenerative two-degree-of-freedom analytical model is also reasonably developed to characterize system dynamics. The stability and vibrational characteristics are then determined by the complex eigenvalues analysis together with the quantitative analysis based on the method of multiple scales. A parametric study is conducted to clarify the roles of friction parameters and different vibration modes on instabilities; both the graphic and analytical expressions of instability boundaries are obtained. To capture the nature of self-excited vibrations and validate the stability analysis, the nonlinear formulations are numerically solved to calculate the transient dynamics in time and frequency domains. Analytical and numerical results reveal that the nonlinear coupling significantly affects the system responses and the bearing vibration plays a dominant role in the dynamic behavior of the present system.  相似文献   

18.
Dynamic vibration absorbers are used to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges, etc. Tuneable vibration absorbers (TVA) are also used as semi-active controllers. In this paper, the application of a TVA for suppression of chatter vibrations in the boring manufacturing process is presented. The boring bar is modeled as a cantilever Euler–Bernoulli beam and the TVA is composed of mass, spring and dashpot elements. In addition, the effect of spring mass is considered in this analysis. After formulation of the problem, the optimum specifications of the absorber such as spring stiffness, absorber mass and its position are determined using an algorithm based on the mode summation method. The analog-simulated block diagram of the system is developed and the effects of various excitations such as step, ramp, etc. on the absorbed system are simulated. In addition, chatter stability is analyzed in dominant modes of boring bar. Results show that at higher modes, larger critical widths of cut and consequently more material removal rate (MRR) can be achieved. In the case of self-excited vibration, which is associated with a delay differential equation, the optimum absorber suppresses the chatter and increases the limit of stability.  相似文献   

19.
An inertial, active device running on its internal feedback is proposed for controlling the self-excited vibration of a single degree-of-freedom Rayleigh oscillator. The control strategy utilizes the time-delayed feedback of the acceleration of the sprung mass of the device. The feedback law is recursive in nature and based on large amount of weighted information regarding the past history of the dynamics. The proposed device, when properly tuned, either completely quenches or reduces the amplitude of vibration. A comparison with a passive absorber reveals that the proposed active absorber can achieve better stability conditions. However like a passive absorber, the device has finite robustness, i.e., it can control only a certain level of instability inherent in the primary self-excited system.  相似文献   

20.
In practical application of High-Tc Superconducting (HTS) maglev, slant is an observable defect. It was caused by constantly one side on and off the vehicle by passengers. So far, this phenomenon has not been reported yet. In order to understand its influence on the stability of the HTS maglev, we experimentally studied the dynamic characteristic and slant effect of HTS maglev under center-load and side-load. It was found that load destabilizes the vehicle, and the side-load can obviously slant the vehicle body. In the end, the pre-load method was proposed to enhance the dynamic stability and suppress the slant, which proved to be considerably effective. These results are critical in practical running of HTS maglev.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号