首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
设(a,b,c)是一组满足a~2+b~2=c~2,gcd(a,b)=1,2|b的本原商高数,运用初等数论方法讨论方程(an)~x+(bn)~y=(cn)~z正整数解(x,y,z,n),证明了:当(a,b,c)=(143,24,145)时,方程仅有正整数解(x,y,z,n)=(2,2,2,m),其中m是任意正整数,上述结果说明此时Jesmanowicz猜想成立.  相似文献   

2.
这是美国第七届中学生数学竞赛中的一题:已知a、b、c、d、e是满足a b c d e=8,a~2 b~2 c~2 d~2 e~2=16的实数。试确定e的最大值。解法1 构造二次函数 f(x)=4x~2 2(a b c d)x (a~2 b~2 c~2 d~2) (x a)~2 (x b)~2 (x c)~2 (x d)~2≥0 又二次项系数4>0,所以有判别式△=4(a b c d)~2-16(a~2 b~2 c~2 d~2)≤0 又a b c d=8-e,a~2 b~2 c~2 d~2=16-e~2,故有(8-e)~2-4(16-e~2)≤0。解得0≤e≤16/5,故e的最大值为16/5。解法2 (a-b)~2≥0(?)a~2 b~2≥2ab 同理有a~2 cb~2≥2ac,a~2 d~2≥2ad,b~2  相似文献   

3.
a~3+b~3+c~3-3abc是一个有趣的代数式。它是一个三次齐次式,整齐、简单、易记,更重要的是它具有很多有用的性质。性质1° a~3+b~3+c~3-3abc能被a+b+c整除。事实上,a~3+b~3+c~3-3abc =(a+b+c)(a~2+b~2+c~2-db-bc-ca) 所以 a~3+b~3+c~3-3abc能被a+b+c整除。性质2°设a,b,c为非负实数, 则a~3+b3+c~3≥3abc,当且仅当a=b=c时取等号。证明∵a~2+b~2+c~2-ab-bc-ca =1/2〔(a-b)~2+(b-c)~2+(c-d)~2〕∴a~3+b~3+c~3-3abc=(a+b+c)·1/2〔(a-b)~2+(b-c)~2+(c-a)~2〕∵a≥0,b≥0,c≥0,且1/2〔(a-b)~2+  相似文献   

4.
设r是大于1的正奇数,a,b,c是满足a~2+b~2=c~r的互素正整数.证明了:当r(?)5(mod8),c>10~(12)r~4且b是奇素数的方幂时,方程x~2+b~y=c~z仅有正整数解(x,y,z)=(a,2,r).  相似文献   

5.
二次函数y=ax~2+bx+c(a≠0),经过配方整理后得: y=a(x+b/2a)~2+(4ac-b~2)/4a 这个公式叫二次函数的极值公式。把这个公式稍加变形得: y=a〔(x+(b/2a))~2+(4ac~2-b~2)/4a~2〕=a〔(x+(b/2a))~2-(b~2-4ac)/4a~2〕。这个变形后的公式,不仅可以求二次函数的极大值或极小值,而且还可以用来求抛物线y=ax~2+bx+c(a≠0)在x轴上所截得的线段的长度。定理:设抛物线y=ax~2+bx+c(a≠0)与x轴交于两点A(x_1,0)、B(x_2,0),(x_1≠x_2)则抛物线在x轴上所截得的线段长为:  相似文献   

6.
设y=kx是双曲线x~2/a~2-y~2/b~2=1的切线,将y=kx代入双曲线方程并整理得 (b~2-a~2k~2)x~2-a~2b~2=0 (1) 由△=4a~2b~2(b~2-a~2k~2)=0得k=±b/a,故双曲线的切线方程为y=±b/ax,而y=±b/ax  相似文献   

7.
证不等式,技巧性很强。用三角代换法者屡见不鲜。但若另辟蹊径,巧用本文中的代数代换,又可别开生面,另有一番情趣。例1 已知a,b∈R求证a~2+ab+b~2-3a-3b+3≥0 证明令x=1/2(a+b), y=1/2(a-b), 则a=x+y, b=x-y,于是原式左边=(x+y)~2+(x~2-y~2)十(x-y)~2 -3〔(x+y)+(x-y)〕+3=3x~2+y~2-6x+3=3(x-1)~2+y~2≥0。例2 已知a,b∈R~+,求证(当且仅当c=b时,取等号)。证明:令x=1/2(a+b),y=1/2(a-b),则a=x  相似文献   

8.
设△ABC的三边与面积分别为a,b,c与△,则 a~2 b~2 c~2≥4 3~(1/2)△, (1)等号当且仅当△ABC为正三角形时成立。不等式(1)称为不等式。众所周知,它有以下加权推广(见[1]): 定理设△ABC的边长与面积分别为a,b,c,△,又x,y,z中至少有两个正数,且yz zx xy>0,则 xa~2 yb~2 zc~2≥4(yz zx xy△)~(1/2), (2)等号当且仅当a~2:b~2:c~2=(y z);(z x):(x y)时成立。关于不等式(1)的证明,已经有了很多证法。不等式(2)的证明却较少见,[1]中采用了解析法,但未完整地给出等号成立的确定过程。[2]中采用配方法证明了,对任意实数x,y,z有:  相似文献   

9.
二、复数复数这一章很多题都是用到任意复数z。z=a+bi(a,b∈R)或z=r(cosθ+isinθ)这个表示法来解或证的。例1.解方程|z|+z=8—4i求复数z。解:设z=a+bi(a,b∈R)|z|=(a~2+b~2)~(1/2)。由题设(a~2+b~2)~(1/2)+a+bi=8—4i由复数相等的条件得:  相似文献   

10.
常见到三数和为零,求三数立方和的问题。这时应用若a b c=0,则a~3 b~3 c~3=3abc解题非常精炼。下举几例。例1 若a b c=0,a~3 b~3 C~3=0,求a~(1991) b~(1991) c~(1991)的值。解∵a b c=0, ∴a~3 b~3 c~3=3abc=0, ∴a、b、c中有一个为零,另两个互为相反  相似文献   

11.
本刊1984年第二期发表了《一元二次方程有根“1”的条件的应用》一文,本文再举数例加以补充说明, 一、利用“若方程ax~2+bx+c=0(a≠0)含有根1,则有a+b+c=0”的结论证题。例1、若方程ax~2+bx+c=0(a≠0)含有根1,求证:a~2/bc+b~2/ac+c~2/ab=1/3证明:∵ax~2+bx+c=0(a≠0)含有根1,∴a+b+c=0, 即有c=-(a+b)。∴a~3+b~3+c~3=a~3+b~3-(a+b)~3=-3a~2b-3ab~2=-3ab(a+b)=-3ab(-c)=3abc两边同除以abc得a~2/bc+b~2/ac+c~2/ab=1/3。二、利用“若a+b+c=0,则方程ax~2+bx+c=0(a≠0)必有一根为1”的结论证题,  相似文献   

12.
平行四边形两对角线(l_1和l_2)的平方和等于各边(邻边为a和b)的平方和,即l_1~2+l_2~2=2(a~2+b~2)。如果令m=l_1/2,c=l_2,代入上式,得m~2=1/2(a~2+b~2)-(1/4)c~2,这就是三角形的中线定理,这里a、b、c为三角形的三边,m为c边上中线。这个定理,不仅可以计算已知三边求它的中线的长,而且对于形如求a~2+b~2的一类问题的最小值颇为简便。例1 已知∠AOB=60°,边OA上有两点P和Q,设OP=a,OQ=b;在边OB上求一点M,使PM~2+OM~2最小,问M点的位置如何?  相似文献   

13.
<正>赛题1 (第20届伊朗奥林匹克竞赛试题)已知正数a,b,c满足a~2+b~2+c~2+abc=4,求证:a+b+c≤3.赛题2 (2011年全国高中数学联赛B卷加试题三)设实数a,b,c≥1,且满足abc+2a~2+2b~2+2c~2+ca-cb-4a+4b-c=28,求a+b+c的最大值.这是两道相关的竞赛题.下面给出它们的简洁解法并做了条件与结论的优化.1相关证明  相似文献   

14.
现行全日制普通高级中学教科书(必修)数学第二册(上)P_(17)有这样一道不等式:对任意的实数a,b,c,d,都有(a~2+b~2)(c~2+d~2)≥(ac+bd)~2.等号当且仅当ad=bc时成立.通过对称性,我们容易联想到它的如下一个姊妹不等式.定理设a,b,x,y∈R,则有(a~2-b~2)(x~2-y~2)≤(ax-by)~2,当且仅当ay=bx时等号成立.  相似文献   

15.
设(a,b,c)为本原的商高数组,满足a~2+b~2=c~2且2|b.1956年,Jesmanowicz猜想:对任给的正整数n,丢番图方程(na)~x+(nb)~y=(nc)~z仅有正整数解x=y=z=2.令P(n)表示n的所有不同素因子乘积.对商高数组(a,b,c)=(p~(2r)-4,4p~r,p~(2r)+4),其中p为大于3的素数且p■1(mod 8),本文证明在条件P(a)|n或者P(n)a下,Jesmanowicz猜想成立.  相似文献   

16.
综合练习     
1.设a∈R,A={x|1≤x≤4},B={x|x~2-2ax+a+2≤0},当AB时,求a的取值范围。 2.(1)讨沦函y=arcctgax(a>0,a≠1)的增减性 (2)求函数的反函数 3.已知x>0,x≠1,n为大于1的自然数,试比较1/log2x+1/log3x+…+1/log~nx与n/log2x的大小。 4.(1)已知a、b、c是互不相等的复数,试求a+b/b=b+c/c=c+a/a的值。 (2)设z_1、z_1是复数,且满足|z_1|<1,|z_2|<1,求证|(z_1-z_2)/(1-z_1z_2)|<1。 5.设等比数列z_1,z_2,z_3,…,z_n,…中的  相似文献   

17.
有些代数问题,如用纯代数方法求解往往比较困难,但通过适当的换元,变成三角问题求解,不但可以简化书写过程,而且能使数量系明朗化,从而化难为易,找到解决问题的途经。代数问题进行三角代换,关键在于熟悉三角函数的性质和一些重要大系式。下面归类举例说明: 一形如x~2+y~2=1,x+y=1(x,y为正数),可设x=sina,y=cosa 或者x=sin~2a,y=cos~2a。例1 已知a~2+b~2=1,c~2+d~2=1,求证|2abd+(a~2-b~3)c|≤1 证明:因为 a~2+b~2=1,c~2+a~2=1,故可设=sina,则b=±cosa,又令C=sinβ,则d=±cosβ而有 |2abd+(a~2-b~2)c|=|2sina(±cosa)(±cosB)  相似文献   

18.
已知:a,b,c,d∈R,p,q∈R~+,且a~2+b~2=p,c~2+d~2=q。求ac+bd的最大值。解一:设a=p~(1/2)sinα,b=p~(1/2)cosα,(0≤α≤2π);c=q~(1/2)sinβ,d=q~(1/2)cosβ,(0≤β≤2π) ∵ac+bd=(p·q)~(1/2)(sinαsinβ+cosαcosβ) =(pq)~(1/2)cos(α-β) 故当α=β时,ac+bd有最大值。且值为(pq)~(1/2)。据基本不等式x~2+y~2≥2xy却易有下解。解二:∵a~2+c~2≥2ac,b~2+d~2≥2bd ∴ ac+bd≤(a~2+b~2+c~2+d~2)/2=(p+d)/2(此是一与a,b,c,d均无关的常数)。故有最大值是(p+d)/2。从上述解一、二我们得知,因(p+d)/2≥(pq)~(1/2),即有比ac+bd的最大值(pq)~(1/2)更大的值(p+d)/2。  相似文献   

19.
在Euler函数φ(n)的性质的基础上,利用整数分解的方法证明了对任意的正整数m,n,非线性方程φ(mn)=aφ(m)+bφ(n)+c~2(a,b,c为勾股数且gcd(a,b,c)=1)当(a,b,c)=(3,4,5),(5,12,13),(7,24,25)时无正整数解,并证明了当a,b为任意的一奇一偶,c为任意的奇数,且满足a~2+b~2=c~2,gcd(a,b)=1,2|b时,方程无正整数解.  相似文献   

20.
一组正整数(a,b,c)称为本原商高数,如果它们满足方程a~2+b~2=c~2且(a,b)=1,2|b.著名的Jesmanowicz-Terai猜想是指当(a,b,c)是本原商高数时,方程a~x+b~y=c~z仅有正整数解(x,y,z)=(2,2,2).本文讨论了商高数的位移形式,即就是:设u是大于2的偶数,本文运用初等数论方法以及同余的性质讨论了指数Diophantine方程(u~2+1)~x+(2u)~y=(u~2-1)~z的可解性,证明了该方程无正整数解(x,y,z).从而部分的解决了Jesmanowicz-Terai猜想的另一种形式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号