首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate experimentally all-optical wavelength conversion based on four-wave mixing in dispersion-engineered silicon nanowaveguides with a picosecond pulse pump. We find that the conversion efficiency is significantly limited by nonlinear losses induced by the two-photon absorption and freecarrier absorption. Using a picosecond pulse pump centered at 1,550 nm, we show that the input continuous-wave signals can efficiently be converted into a broadband idler pulse in silicon waveguides with various dimensions. Conversion efficiencies versus signal wavelengths are different for silicon waveguides with different dimensions due to the variation in the phase mismatch; we obtain a conversion efficiency of – 32 dB in silicon nanowaveguides with a length of 5.8 mm. Such on-chip optical wavelength converters can find important potential applications in highly-integrated optical circuits for all-optical ultrafast signal processing.  相似文献   

2.
用激光微细加工制作平面型InGaAs/InP PIN 光探测器   总被引:3,自引:1,他引:2       下载免费PDF全文
 采用激光微细加工技术来制作单片集成光接收机的探测器,在制作过程中,用固态杂质源10.6 μm激光诱导Zn扩散工艺来进行探测器的p-区掺杂。制作出平面型顶部入射的InGaAs/InP PIN 光探测器,响应度为0.21 A/W。分析了激光诱导扩散中影响探测器性能的因素,因此提出了扩散温度自动控制、扩散区温度分布均匀化及激光焦斑与扩散区精确对准等相应的改进方法。  相似文献   

3.
Stimulated Raman scattering in silicon was investigated at liquid helium temperatures. A Q-switched single mode Nd: YAG laser was used to generate Stokes radiation at 1.127 μm. Time resolved measurements give a maximum power conversion efficiency of 20%. The effects of intensity induced losses are discussed.  相似文献   

4.
We study the fabrication and power conversion efficiency of GaAs photodiodes, which have been nano-structured and covered with colloidal quantum dots. A focussed ion beam is used to etch vertical channels into the photodiodes and the detrimental effects of this treatment are characterised in-situ during the fabrication process. A novel experimental configuration allows the electrical characterization of the photodiodes under laser illumination during the nano-fabrication process and reveals the gradual decrease of the photodiodes’ shunt resistance with increasing laterally revealed surface along the etched channels. This is interpreted as evidence for leakage currents through redeposited material and surface states on the lateral channel surface. After the fabrication step the channels are filled with colloidal quantum dots, which upon absorption of light transfer electronic excitations to the photodiode via resonance energy transfer. It is found that after the addition of quantum dots the nano-structured photodiodes show larger enhancements of the energy conversion efficiency under simulated solar irradiance than the pristine photodiodes. Nevertheless, the device degradation induced by the ion beam treatment itself cannot be compensated for.  相似文献   

5.
In order to considerable enhancement of the efficiency of silicon solar cells, in this paper, for the first time, we present a new proposal for silicon based tandem solar cells. For investigation of this idea, we have evaluated the characteristics of 3C–SiC/Si crystalline tandem solar cells connected series by a tunneling junction, under air mass 1.5 global irradiance spectrums. A 2D simulation including the effects of surface passivation, back surface field (BSF), and carrier tunneling have been performed to obtain the optical and electrical characteristics of single junction silicon, 3C–SiC, and finally the tandem cells. The obtained data illustrate that the best design parameters considering the experimental limitations can be obtained. High energy conversion efficiency for the proposed structure of 26.09% has been achieved for 3C–SiC/Si tandem structure driven by 20.49% and 17.86% conversion efficiencies of single junction Si and 3C–SiC solar cells, respectively. Our results justifies that the higher conversion efficiency of the Si-based tandem structure compared with 3C–SiC and Si cells stems from enhancement of open circuit voltage and fill factor parameter at the hands of decrease in short circuit current limited by the top 3C–SiC cell.  相似文献   

6.
We present a device for two-stage frequency upconversion of single-photon-level signals in the 1.55 μm telecom band to the green spectral region with low excess noise, suitable for detection by low-timing-jitter silicon single-photon avalanche photodiodes (APDs). We achieve a net conversion efficiency of 87% and a system timing jitter below 70 ps FWHM, dominated by the jitter of the APD. Modifications of our device are suitable for downconversion of single photons from visible-wavelength quantum emitters into the telecom band.  相似文献   

7.
在一定条件SF6气体氛围中,硅可在飞秒激光辐照区产生m量级的尖峰结构。针对不同尖峰高度的微构造硅,在不同温度下退火,采用电子蒸发的方法在正反面分别镀上铝电极,制备出了飞秒激光微构造光电二极管,并测试了其光电响应。实验结果表明:飞秒激光微构造光电二极管的响应随微构造硅光电二极管的尖峰高度和退火温度的不同而不同。尖峰高度为3~4 m的样品在973 K温度退火30 min后,响应度可达0.55 A/W。即使在1100 nm波长处,这种新型的硅光电二极管的响应仍可高达0.4 A/W。  相似文献   

8.
A novel octagonal structure of photodiodes using standard CMOS technology has been developed to serve as a de-multiplexer for spatially multiplexed fiber optic communication systems. Concentric photodiodes of six different structure types are investigated for this purpose. The responsivity of the fabricated devices lies within ten percent of the theoretical values at 660 nm. The concept is demonstrated for silicon and the geometry can be extended to other materials commonly used in optical communications. This presents structural details, device model and equivalent circuits for these devices. Test results for detector responsivity, leakage currents and quantum efficiency are also presented.  相似文献   

9.
Carey JE  Crouch CH  Shen M  Mazur E 《Optics letters》2005,30(14):1773-1775
We investigated the current-voltage characteristics and responsivity of photodiodes fabricated with silicon that was microstructured by use of femtosecond-laser pulses in a sulfur-containing atmosphere. The photodiodes that we fabricated have a broad spectral response ranging from the visible to the near infrared (400-1600 nm). The responsivity depends on substrate doping, microstructuring fluence, and annealing temperature. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, 2 orders of magnitude higher than for standard silicon photodiodes. For wavelengths below the bandgap we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm.  相似文献   

10.
张云霄  廖栽宜  王圩 《中国物理 B》2009,18(6):2393-2397
A new evanescently-coupled uni-traveling-carrier photodiode (EC-UTC PD) based on a multimode diluted waveguide (MDW) structure is fabricated, analysed and characterized. Optical and electrical characteristics of the device are investigated. The excellent characteristics are demonstrated such as a responsivity of 0.36~A/W, a bandwidth of 11.5~GHz and a small-signal 1-dB compression current greater than 18~mA at 10~GHz. The saturation current is significantly improved compared with those of similar evanescently-coupled pin photodiodes. The radio frequency (RF) bandwidth can be further improved by eliminating RF losses induced by the cables, the probe and the bias tee between the photodiode and the spectrum analyzer.  相似文献   

11.
在产业化比较成熟的单室沉积非晶硅薄膜太阳电池基础上,进行了非晶硅/非晶硅/微晶硅三叠层太阳电池性能优化的研究.在生产线上纯单室沉积的非晶硅/非晶硅叠层太阳电池基础上,通过调节n-p隧穿结并采用自行研制开发的单室微晶硅底电池的沉积路线,获得了单室沉积的光电转换效率达到9.52%的非晶硅/非晶硅/微晶硅三叠层太阳电池. 关键词: 硅基薄膜太阳电池 三叠层 微晶硅  相似文献   

12.
The dependence of laser beam induced current (LBIC) on the junction structure of \(\text {n}^{+}\) -on-p HgCdTe photodiode has been numerically investigated. The calculated LBIC profiles varying with the junction depth are in good agreement with the experimental results (Musca et al. in J Electron Mater 28:603–610, 1999). It is found that there is a linear relationship between the magnitude of LBIC peak and the size of junction, such as depth and length. In addition, the LBIC shape between two peaks becomes more flat with increasing the junction depth. A competition mechanism of lateral and vertical current flow is proposed to explain the junction size dependence of the LBIC signal. The results help us to better understand the induced current flowing in photodiodes with different junction structures.  相似文献   

13.
Photoionization of excited atoms and resonant absorption effects, which can decrease gas breakdown thresholds by high-power lasers at decreasing wavelengths, also improve low intensity detection sensitivities of gas-filled photodiodes when such devices are biased with dc fields close to gas breakdown. Spectral results indicate very promising potential sensitivity for detecting ultra-violet raidation. D* even in the visible is comparible to that of silicon photodiodes. The "relatively" large dc bias fields employed here improve speed of response significantly. Over moderate (10 -7 - 10-8W) received signal powers response is non-linear with ? varying inversely with wavelength.  相似文献   

14.
Electron beam induced current (EBIC) at p–n junctions can be measured in high spatial resolution using a thin lamella geometry, where most incident electrons transmit the sample. We explore the case of low excitation energies in a wedge‐shaped lamella geometry to increase resolution in a controlled way. We compare a sample with high (Si) and low (manganite‐titanate heterojunction) diffusion length and use Monte Carlo based simulations as a reference. It is shown that the EBIC signal obtained from the Si junction vanishes below a thickness of 300 nm, whereas this happens at 80 nm in the PCMO–STNO junction. This allows for achieving an EBIC resolution of better than 50 nm for the latter system. The observed fundamental differences between the silicon and the perovskite junction are discussed in terms of preparation induced ‘dead’ layers and surface recombination.  相似文献   

15.
We demonstrate photodiodes in deposited polycrystalline silicon at 1550 nm wavelength with 0.15 A/W responsivity, 40 nA dark current, and gigahertz time response. Subband absorption is mediated by defects that are naturally present in the polycrystalline material structure. The material exhibits a moderate absorption coefficient of 6 dB/cm, which allows the same microring resonator device to act as both a demultiplexing filter and a photodetector. We discuss the use of deposited silicon-based complementary metal-oxide semiconductor materials for nanophotonic interconnects.  相似文献   

16.
Using silicon photodiodes with an ultrathin passivation layer, the average total energy lost to silicon target electrons (electronic stopping) by incident low energy ions and the recoil target atoms they generate is directly measured. We find that the total electronic energy deposition and the ratio of the total nuclear to electronic stopping powers for the incident ions and their recoils each follow a simple, universal representation, thus enabling systematic prediction of ion-induced effects in silicon. We also observe a velocity threshold at 0.05 a.u. for the onset of electronic stopping.  相似文献   

17.
Micropixel avalanche photodiodes (MAPDs) are new instruments for detecting low-intensity light. They consist of many microcounters (pixels integrated on a common silicon wafer). A unique design by the Joint Institute for Nuclear Research (JINR) (Z. Sadygov)??deep-microwell MAPD??provides an order of larger pixel densities without losses in photon-detection efficiency. These instruments are beginning to find use in precision electromagnetic calorimetry. MAPDs can be most widely applied as photodetectors in scanners for positron-emission tomographs (PETs), particularly the time-of-flight PETs becoming popular now. The possibility of using MAPDs in PETs is shown, and the time resolution of a pair of quanta detected by Lutetium Fine Silicate scintillation crystals with MAPD readout is obtained at the level of 400 ps.  相似文献   

18.
In this work the impact of variation in mole fraction of tunnel junction and doping concentration of top window layer are investigated on the photovoltaic performance of dual junction InGaP/GaAs solar cell on silicon substrate. How does the Si substrate help this structure to act as a low cost concentrator cell for terrestrial application is also discussed. The detailed analysis of the cell is carried out through the performance measurement such as external quantum efficiency, internal quantum efficiency, fill factor, open circuit voltage, short circuit current density, spectral density and reflectance. This simulation model provides efficiency of 30.40 % at AM1.5G spectrum under 1 sun. It provides a path to the researcher for the development of III–V multi junction solar cell at a low cost.  相似文献   

19.
Silicon-nitride-on-insulator (Si3N4) photonic circuits have seen tremendous advances in many applications, such as on-chip frequency combs, Lidar, telecommunications, and spectroscopy. So far, the best film quality has been achieved with low pressure chemical vapor deposition (LPCVD) and high-temperature annealing (1200°C). However, high processing temperatures pose challenges to the cointegration of Si3N4 with pre-processed silicon electronic and photonic devices, lithium niobate on insulator (LNOI), and Ge-on-Si photodiodes. This limits LPCVD as a front-end-of-line process. Here, ultralow-loss Si3N4 photonics based on room-temperature reactive sputtering is demonstrated. Propagation losses as low as 5.4 dB m−1 after 400°C annealing and 3.5 dB m−1 after 800°C annealing are achieved, enabling ring resonators with highest optical quality factors of > 10 million and an average quality factor of 7.5 million. To the best of the knowledge, these are the lowest propagation losses achieved with low temperature Si3N4. This ultralow loss enables the generation of microresonator soliton frequency combs with threshold powers of 1.1 mW. The introduced sputtering process offers full complementary metal oxide semiconductor (CMOS) compatibility with front-end silicon electronics and photonics. This could enable hybrid 3D integration of low loss waveguides with integrated lasers and lithium niobate on insulator.  相似文献   

20.
北京同步辐射装置软X光束线通量谱的绝对测量与计算   总被引:4,自引:0,他引:4  
在北京同步辐射装置(BSRF)上用全吸收平行板充氙电离室作一级标准探测器,对硅光电二极管(AXUV—100)的效率在光子能量5—6.5keV进行了标定,建立了二级标准探测器;AXUV—100硅光电二极管在50eV-6keV有很好的线性响应,将其在硬X射线波段已标定的效率曲线外推到软X射线波段,并对BSRF3B1A和4B9B光束线在软X射线波段光子通量谱进行了初步地测量,测量结果与理论计算结果较为符合.在3B1A软X光学实验站,利用二级标准探测器对用于惯性约束聚变(ICF)的软X光探测器的灵敏度进行了标定,并取得了满意的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号