首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A signal‐enhanced immunosensor has been developed by self‐assembling Au NPs onto a ferrocene‐branched poly(allylamine)/multiwalled carbon nanotubes (PAA‐Fc/MWNTs) modified electrode for the sensitive determination of hepatitis B surface antigen (HBsAg) as a model protein. The formation of PAA‐Fc/MWNTs composite not only effectively avoided the leakage of Fc and retained its electrochemical activity, but also enhanced the conductivity and charge‐transport properties of the composite. Further adsorption of Au NPs into the PAA matrix provided both the interactive sites for the immobilization of hepatitis B surface antibody (HBsAb) and a favorable microenvironment to maintain its activity. Tests performed with this immunosensor showed a specific response to HBsAg in the range of 0.1–350.0 ng mL?1 with a detection limit of 0.03 ng mL?1.  相似文献   

2.
《Electroanalysis》2005,17(2):155-161
A highly sensitive immunosensor based on immobilization of hepatitis B surface antibody (HBsAb) on platinum electrode (Pt) modified silver colloids and polyvinyl butyral (PVB) as matrixes has been developed for potentiometric immunoanalysis to detect hepatitis B surface antigen (HBsAg) in this study. HBsAb molecules were immobilized successfully on nanometer‐sized silver colloid particles associated with polyvinyl butyral on a platinum electrode surface. The modification procedure was electrochemically monitored by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The HBsAb‐silver‐PVB‐modified electrode exhibited direct electrochemical behavior toward HBsAg. The factors influencing the performance of the resulting immunosensor were studied in detail. More than 94.7% of the results of human serum samples obtained by this method were in agreement with those obtained by enzyme‐linked immunosorbent assays (ELISAs). The resulting immunosensor exhibited a sigmoid curve with log HBsAg concentration, high sensitivity (39.8 mV/decade), wide linear range from 16.0 to 800 ng mL?1 with a detection limit of 3.6 ng mL?1, fast potentiometric response (<3 min) and long‐term stability (>4 months). The response mechanism of the immunosensors was also studied with AC impedance techniques.  相似文献   

3.
Immunosenors are of great interest because oftheir potential utility as specific, simple, label-free anddirect detection techniques and reductions in size, costand time of analysis compared with conventional im-munoassay techniques. The immunoassays with …  相似文献   

4.
A novel immunosensor has been developed by self‐assembling Au NPs onto a ferrocene‐branched chitosan/multiwalled carbon nanotubes (CS‐Fc/MWCNTs) modified electrode for the sensitive determination of hepatitis B surface antigen (HBsAg). The formation of CS‐Fc effectively avoids the leakage of Fc and retains its electrochemical activity. Incorporation of MWCNTs and Au NPs into CS‐Fc further increases the electrochemical active Fc in the CS films and provides interactive sites for the immobilization of HBsAb. The morphologies and electrochemistry of the formed biofilm were investigated by using scanning electron microscopy and electrochemical techniques. The immunosensor exhibits a specific response to HBsAg in the range of 1.0–420 ng mL?1. Excellent analytical performance, fabrication reproducibility and operational stability of the proposed immunosensor indicated its promising application in clinical diagnostics.  相似文献   

5.
We report on the modification of a graphene paste electrode with gold nanoparticles (AuNPs) and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen (HBsAg). To obtain the immunosensor, an antibody against HBsAg was immobilized on the surface of the electrode, and this process was followed by cyclic voltammetry and electrochemical impedance spectroscopy. The peak currents of a hexacyanoferrate redox system decreased on formation of the antibody-antigen complex on the surface of the electrode. Then increased electrochemical response is thought to result from a combination of beneficial effects including the biocompatibility and large surface area of the AuNPs, the high conductivity of the graphene paste electrode, the synergistic effects of composite film, and the increased quantity of HBsAb adsorbed on the electrode surface. The differential pulse voltammetric responses of the hexacyanoferrate redox pair are proportional to the concentration of HBsAg in the range from 0.5–800?ng?mL?1, and the detection limit is 0.1?ng?mL?1 (at an S/N of 3). The immunosensor is sensitive and stable.
Figure
We report on the modification of a graphene paste electrode with gold nanoparticles and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen. The immunosensor is sensitive and stable.  相似文献   

6.
The magnetic nanoparticles modified with carboxyl functional group were synthesized and characterized. These nanoparticles covalently bound with hepatitis B surface antibody(HBsAb), were used to detect hepatitis B surface antigen (HBsAg) in immunovoltammetry. The detection limit was found to be 0.06 ng/mL, which is much higher than that of enzyme-linked immunosorbent assay (ELISA) used in clinical analysis.  相似文献   

7.
The application of gold nanoparticle-based electrochemical immunoassays have been extensively studied for the detection of hepatitis B surface antigen (HBsAg), but most often they exhibit low sensitivity. We describe the fabrication of a new electrochemical immunoassay for signal amplification of the antigen-antibody reaction combined with the nanogold-based bio-barcode technique. Hepatitis B surface antibody (HBsAb) was initially immobilized on a nanogold/thionine/DNA-modified gold electrode, and then a sandwich-type immunoassay format was employed for the detection of HBsAg using nanogold-codified horseradish peroxidase-HBsAb conjugates as secondary antibodies. Under optimal conditions, the current response of the sandwich-type immunocomplex relative to the H2O2 system was proportional to HBsAg concentration in the range from 0.5 to 650 ng·mL?1 with a detection limit of 0.1 ng·mL?1 (S/N?=?3). The precision, reproducibility and stability of the immunosensor were acceptable. Subsequently, the immunosensors were used to assay HBsAg in human serum specimens. Analytical results were in agreement with those obtained by the standard chemiluminescence enzyme-linked immunosorbent assay.  相似文献   

8.
A novel three-dimensional porous chitosan membrane material was prepared as a matrix to encapsulate hepatitis B surface antibody (HBsAb) for fabrication of immunosensors. The porous chitosan matrix was prepared by electrodepositing a designer nanocomposite solution of chitosan-encapsulated silica nanoparticle hybrid film on an ITO electrode, and then removing the silica nanoparticles with HF solution. Using HBsAb as a model, the potentiometric immunosensor was constructed by linking HBsAb molecules to the three-dimensional porous chitosan film using glutaraldehyde as a cross-linker. Scanning electron microscopy was used to investigate the surface morphology of the three-dimensional porous chitosan films. Cyclic voltammograms and electrochemical impedance spectroscopy were used to probe the interfacial properties of the immunosensor. Results showed that the fabricated immunosensor with three-dimensional porous structure possessed high surface area, good mechanical stability, and good hydrophilicity, which provided a biocompatible microenvironment for maintaining the bioactivity of the immobilized protein and increased the protein loading. Therefore, the present immunosensor exhibits a wide linear range from 6.85 to 708 ng mL(-1) with a low detection limit of 3.89 ng mL(-1) for the detection of hepatitis B surface antigen (HBsAg). This work implied that the biocompatible and controllable three-dimensional porous chitosan membrane possessed potential applications for biosensing.  相似文献   

9.
A novel potentiometric immunosensor for detection of hepatitis B surface antigen (HBsAg) has been developed by means of self-assembly (SA) and opposite-charged adsorption (OCA) techniques to immobilize hepatitis B surface antibody (HBsAb) on a platinum electrode. A cleaned platinum electrode was first pretreated in the presence of 10% HNO3 and 2.5% K2CrO4 solution and held at -1.5 V (vs SCE) for 1 min to make it negatively charged and then immersed in a mixing solution containing hepatitis B surface antibody, colloidal gold (Au), and polyvinyl butyral (PVB). Finally, HBsAb was successfully immobilized onto the surface of the negatively charged platinum electrode modified nanosized gold and PVB sol-gel matrixes. The modified procedure was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized hepatitis B surface antibody exhibited direct electrochemical behavior toward hepatitis B surface antigen (HBsAg). The performance and factors influencing the performance of the resulting immunosensor were studied in detail. More than 95.7% of the results of the human serum samples obtained by this method were in agreement with those obtained by enzyme-linked immunosorbent assays (ELISAs). The resulting immunosensor exhibited fast potentiometric response (<3 min) to HBsAg. The detection limit of the immunosensor was 2.3 ng.mL(-1), and the linear range was from 8 to 1280 ng.mL(-1). Moreover, the studied immunosensor exhibited high sensitivity, good reproducibility, and long-term stability (>6 months).  相似文献   

10.
A novel hepatitis B surface antigen (HBsAg) immunosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed mercaptopropyltrimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, hepatitis B surface antibody (HBsAb) was adsorbed onto the surface of the gold nanoparticles. Thus, an interfacial design of bare gold electrode (BGE)/MPS/Au/HBsAb was prepared to detect HBsAg in human serum based on the specific reaction of HBsAb and HBsAg. The electrochemistry of ferricyanide redox reaction was used as a marker to probe the interface and as a redox probe to determinate HBsAg. The main conditions of the assembly of MPS sol-gel, gold nanoparticles, the immobilization of HBsAb, and incubation time were investigated in detail. Compared with the glutaraldehyde binding approach, the antibodies immobilized by this method present larger amount and higher immunoactivity. The linearity of HBsAg in the range of 2-360 ng/mL with the correlation coefficient of 0.998 was obtained. This immunosensor system was evaluated on several clinical sample, the analytical results obtained by this method were in agreement with those detected by the enzyme-linked immunosorbent assay (ELISA) method, indicating a promising alternative tool for clinical diagnosis. Moreover, the studied immunosensor exhibited good reproducibility, long-term stability, high sensitivity and specificity.  相似文献   

11.
基于电沉积和层层自组装技术,提出了一种新的生物分子固定化方法,研制成一种高灵敏电位型乙肝表面抗原免疫传感器。利用L-半胱胺酸(LCys)的双官能团结合双层纳米金,从而通过比表面积大,生物相容性好的纳米金胶吸附大量抗体,同时用聚乙烯醇缩丁醛(PVB)薄膜的笼效应把乙肝表面抗体(HBsAb)和纳米金固定在玻碳电极上,从而制得了高灵敏度、高稳定性的电位型免疫传感器。采用循环伏安法(CV)对电极的层层自组装过程进行了考察,并对该免疫传感器的性能进行了详细的研究。该免疫传感器线性范围是8.5~256.0ng/mL,线性相关系数为0.9978,灵敏度为89.0,检出限为3.1ng/mL。已用于病人的血清样品分析。  相似文献   

12.
Infectious hepatitis B virus (HBV), namely Dane particles (DPs), consists of a core nucleocapsid including genome DNA covered with an envelope of hepatitis B surface antigen (HBsAg). We report the synthesis, structure, and HBV-trapping capability of multilayered protein nanotubes having an anti-HBsAg antibody (HBsAb) layer as an internal wall. The nanotubes were prepared using an alternating layer-by-layer assembly of human serum albumin (HSA) and oppositely charged poly-L-arginine (PLA) into a nanoporous polycarbonate (PC) membrane (pore size, 400 nm), followed by depositions of poly-L-glutamic acid (PLG) and HBsAb. Subsequent dissolution of the PC template yielded (PLA/HSA)(2)PLA/PLG/HBsAb nanotubes (AbNTs). The SEM measurements revealed the formation of uniform hollow cylinders with a 414 ± 16 nm outer diameter and 59 ± 4 nm wall thickness. In an aqueous medium, the swelled nanotubes captured noninfectious spherical small particles of HBsAg (SPs); the binding constant was 3.5 × 10(7) M(-1). Surprisingly, the amount of genome DNA in the HBV solution (HBsAg-positive plasma or DP-rich solution) decreased dramatically after incubation with the AbNTs (-3.9?log order), which implies that the infectious DPs were completely entrapped into the one-dimensional pore space of the AbNTs.  相似文献   

13.
《Electroanalysis》2017,29(10):2348-2357
This work describes a simple preparation of 1‐diazo‐2‐naphthol‐4‐sulfonic acid (1,2,4‐acid) and multiwalled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) for the simultaneous detection of Co(II) and Cu(II). MWCNTs, with their good conductivity and large surface area, were drop‐casted onto the surface of the GCE prior to the electrodeposition of 1,2,4‐acid, a metal chelating agent. Co(II) and Cu(II) were simultaneously measured by differential pulse anodic stripping voltammetry (DPASV) in a batch system. Under optimum conditions, the linear range of Co(II) was between 0.10 and 2.5 μg mL−1 with an LOD of 80 ng mL−1. Two linear ranges were obtained for Cu(II), 0.0050 to 0.030 μg mL−1 and 0.040 to 0.25 μg mL−1,with an LOD of 2.4 ng mL−1. The method offered a high operational stability for up to 52 measurements (RSD=3.4 % for Co(II) and 2.6 % for Cu(II)) and good reproducibility (RSD=1.2 % for Co(II) and 1.7 % for Cu(II)). In the simultaneous detection of Co(II) and Cu(II), there was no effect from common interferences found in wastewater. The method was successfully applied in real water samples with good recoveries (88.2±0.8 to 102.0±0.8 % for Co(II) and 96.5±0.4 to 103.8±0.9 % for Cu(II)) and the results were in good agreement with those obtained from inductively coupled plasma optical emission spectrometry (ICP‐OES) (P >0.05).  相似文献   

14.
用红细胞代替辣根过氧化物酶作为双抗体夹心免疫分析中第二抗体的标记物, 建立了一种红细胞标记抗体的免疫化学发光测定乙型肝炎病毒表面抗原的新方法. 在免疫反应完成后, 结合了抗原-抗体免疫复合物的致敏红细胞在低渗溶液中溶血, 释放出血红蛋白. 基于血红蛋白对鲁米诺-H2O2体系化学发光具有催化作用的原理, 采用化学发光法测定血红蛋白含量. 测得的血红蛋白发光强度与待测抗原浓度呈线性关系. 采用这种方法可检测出0.5 ng/mL的乙型肝炎病毒表面抗原. 将该方法与酶联免疫吸附分析(ELISA)结合起来对乙型肝炎患者血清乙肝病毒表面抗原(HBsAg)进行检测, 两者符合率均为97%, 表明本法具有良好的灵敏度和特异性, 可用于临床标本测试.  相似文献   

15.
A simple sensitive LC–MS/MS method has been developed for the simultaneous determination of giraldoid A and giraldoid B in rat plasma. The method was applied to pharmacokinetics studies of the two compounds from Daphne giraldii Nitsche. Chromatographic separation was accomplished on an Acquity UPLC™ BEH C18 column (100 × 2.1 mm, 1.7 mm) by gradient elution with a flow rate of 0.2 mL min−1. The method was linear over the concentration range of 1.0–1000 ng mL−1, and the lower limits of quantification were 1.04 ± 0.10 and 1.04 ± 0.09 ng mL−1, respectively. The intra‐ and inter‐day precisions (RSD) were <10.14 and 9.96%. The extraction recovery of the analytes was acceptable. Stability studies demonstrated that the two compounds were stable in the preparation and analytical process. The maximum plasma concentration was 687.78 ± 243.62 ng mL−1 for giraldoid A and 952.38 ± 131.99 ng mL−1 for giraldoid B. The time to reach the maximum plasma concentration was 0.50 ± 0.37 h for giraldoid A and 0.50 ± 0.66 h for giraldoid B. The validated method was successfully applied to investigate the concentration–time profiles of giraldoid A and giraldoid B.  相似文献   

16.
A sensitive and specific electrochemical immunosensor was developed with α‐fetoprotein (AFP) as the model analyte by using gold nanoparticle label for enzymatic catalytic amplification. A self‐assembled monolayer membrane of mercaptopropionic acid (MPA) was firstly formed on the electrode surface through gold‐sulfur interaction. Monoclonal mouse anti‐human AFP was covalently immobilized to serve as the capture antibody. In the presence of the target human AFP, gold nanoparticles coated with polyclonal rabbit anti‐human AFP were bound to the electrode via the formation of a sandwiched complex. With the introduction of goat anti‐rabbit IgG conjugated with alkaline phosphatase, the dentritical enzyme complex was formed through selective interaction of the secondary antibodies with the colloidal gold‐based primary antibody at the electrode, thus affording the possibility of signal amplification for AFP detection. Current response arising from the oxidation of enzymatic product was significantly amplified by the dentritical enzyme complex. The current signal was proportional to the concentration of AFP from 1.0 ng mL?1 to 500 ng mL?1 with a detection limit of 0.8 ng mL?1. This system could be extended to detect other target molecules with the corresponding antibody pairs.  相似文献   

17.
表面等离子体子共振生物传感器用于乙肝表面抗原的测定   总被引:5,自引:1,他引:5  
运用自行研制的表面等离子体子共振(SPR)生物传感器,采用自组装成膜技 术并以戊二醛作偶联剂,在传感片表面修饰HBsAg单克隆抗体,将其用于乙肝表面 抗原(HBsAg)的检测。实验结果表明SPR生物传感器对HBsAg的检出限为0.06ng/mL 。与传统的酶联免疫吸附试验(ELISA)相比,SPR生物传感器的检出灵敏度明显高 于ELISA法。用该SPR生物传感器对HBsAg质控血清与纯化的HBsAg溶液进行比较检测 ,结果表明该SPR生物传感器对HBsAg具有好的特异选择性。  相似文献   

18.
A reliable, high‐throughput and sensitive LC–MS/MS procedure was developed and validated for the determination of five tyrosine kinase inhibitors in human plasma. Following their extraction from human plasma, samples were eluted on a RP Luna®‐PFP 100 Å column using a mobile phase system composed of acetonitrile and 0.01 m ammonium formate in water (pH ~4.1) with a ratio of (50:50, v /v) flowing at 0.3 mL min−1. The mass spectrometer was operating with electrospray ionization in the positive ion multiple reaction monitoring mode. The proposed methodology resulted in linear calibration plots with correlation coefficients values of r 2 = 0.9995–0.9999 from concentration ranges of 2.5–100 ng mL−1 for imatinib, 5.0–100 ng mL−1 for sorafenib, tofacitinib and afatinib, and 1.0–100 ng mL−1 for cabozantinib. The procedure was validated in terms of its specificity, limit of detection (0.32–1.71 ng mL−1), lower limit of quantification (0.97–5.07 ng mL−1), intra‐ and inter assay accuracy (−3.83 to +2.40%) and precision (<3.37%), matrix effect and recovery and stability. Our results demonstrated that the proposed method is highly reliable for routine quantification of the investigated tyrosine kinase inhibitors in human plasma and can be efficiently applied in the rapid and sensitive analysis of their clinical samples.  相似文献   

19.
Lateral flow immunoassay (LFIA) is a rapid, simple, and inexpensive point-of-need method. A major limitation of LFIA is a high limit of detection (LOD), which impacts its diagnostic sensitivity. To overcome this limitation, we introduce a signal-enhancement procedure that is performed after completing LFIA and involves controllably moving biotin- and streptavidin-functionalized gold nanoparticles by electrophoresis. The nanoparticles link to immunocomplexes forming multilayer aggregates on the test strip, thus, enhancing the signal. Here, we demonstrate lowering the LOD of hepatitis B surface antigen from approximately 8 to 0.12 ng mL−1, making it clinically acceptable. Testing 118 clinical samples for hepatitis B showed that signal enhancement increased the diagnostic sensitivity of LFIA from 73 % to 98 % while not affecting its 95 % specificity. Electrophoresis-driven enhancement of LFIA is universal (antigen-independent), takes two minutes, and can be performed by an untrained person.  相似文献   

20.
A colloidal gold conjugated anti-baicalin monoclonal antibody (anti-BA MAb) was prepared and used in an immunochromatographic assay (ICA) for BA in Scutellariae Radix and Kampo medicines. This competitive ICA uses an anti-BA MAb which shows a high specificity for BA and baicalein. Its advantages include a short assay time (15 min), no dependence on any instrumental systems, and it can detect BA in plant materials and Kampo medicines. The limit of detection for the ICA was found to be around 0.6 μg mL−1of baicalin. Moreover, the usefulness of the combination of indirect competitive ELISA and the ICA using anti-BA MAb as a quality control method was confirmed for analysis of BA in Scutellariae Radix and Kampo medicines with a sufficient sensitivity (200 ng mL−1 to 2 μg mL−1), obtainable in an easy and timely manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号