首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
涩柿可溶性单宁的可见/近红外漫反射光谱无损检测研究   总被引:1,自引:0,他引:1  
旨在建立可见/近红外漫反射光谱与涩柿内部可溶性单宁之间的关系,以评价可见/近红外漫反射光谱在测量涩柿内部指标可溶性单宁的应用价值.在可见/近红外光谱区域(570~1848 nm),实验对比分析了不同数学建模算法、不同导数处理方法和不同散射及标准化处理的涩柿可溶性单宁定标模型.结果表明,应用改进偏最小二乘回归算法、一阶导处理和去散射处理所建涩柿可溶性单宁定标模型的预测性能较优,其定标交互验证相关系数(Rcv)和预测相关系数(Rp2)分别为0.722 7和0.678 5,定标交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.148 4和0.176 3.研究表明,可见/近红外漫反射光谱对涩柿可溶性单宁的快速无损检测具有一定的可行性,但模型精度有待提高.  相似文献   

2.
可溶性固形物和糖酸比是苹果内部品质主要评价指标之一。为此进行苹果糖酸比和可溶性固形物可见/近红外漫反射和漫透射对比检测研究。180个冰糖心和红富士样品被分成建模集和预测集(136∶44),分别用于建立偏最小二乘模型和验证模型的预测能力。在运动速度5个/秒时,采集了冰糖心和红富士两种样品的可见近红外光谱。漫反射和漫透射可见近红外光谱经多元散射校正、标准正态变量变换、基线校正等预处理后,建立了偏最小二乘回归模型。未参与建模的44个样品用于评价模型的预测能力,经比较,漫透射检测方式优于漫反射检测方式,主要因为漫透射检测方式能更有效地克服杂散光。可溶性固形物模型预测相关系数达到0.936,预测均方根误差为0.476°Brix;糖酸比模型预测相关系数达到0.785,预测均方根误差为10.94。研究结果表明: 应用可见/近红外漫透射光谱技术,可实现苹果可溶性固形物和糖酸比在线检测。为大宗水果内部品质分选提供了技术支持和参考依据。  相似文献   

3.
近红外漫反射光谱检测梨内部指标可溶性固性物的研究   总被引:2,自引:0,他引:2  
旨在建立近红外漫反射光谱与梨水果内部可溶性固形物之间的关系,以评价近红外漫反射光谱在测量梨水果内部指标可溶性固形物的应用价值。应用近红外光谱(350~1 800 nm),采用多元线性回归(MLR)、主成分回归(PCR)和偏最小二乘法(PLS)三种不同的数学校正方法对梨水果的可溶性固形物(SSC)进行了定量分析,并且对梨水果不同位置的吸光度原始光谱,一阶微分和二阶微分三种不同预处理情况下的模型进行了最优化分析。在梨水果赤道部位预测结果较为理想,采用一阶微分预处理方法下应用PLS方法。研究结果为预测集的相关系数为0.851 7, 预测样本均方根误差为0.879 3。研究表明,近红外漫反射光谱可以作为一种准确、可靠和无损的检测方法用于评价梨水果内部指标可溶性固形物。  相似文献   

4.
杏贮藏期间可溶性固形物和硬度的近红外光谱检测   总被引:2,自引:0,他引:2  
以杏为材料,研究其贮藏期间可溶性固形物和硬度的近红外漫反射无损检测模型的建立方法。研究发现,定标建模最少样品量为100个。对于可溶性固形物,刚收获样品的校正模型对各贮藏阶段的预测效果均较好,决定系数(r2p)接近0.9、预测均方根误差(RMSEP)在0.6左右及相对分析误差(RPDp)达2.5以上;而且混合阶段模型的预测效果均优于采收及不同贮藏阶段的独立模型,r2p和RPDp分别达0.9和3.0以上、RMSEP在0.3—0.5之间。对于硬度,各阶段独立模型仅能粗略预测相应贮藏时期的样品,而混合阶段模型对各贮藏时期的样品均能实现快速分析,rp2和RMSEP分别在0.8和1.0左右、RPDp达2.0。结果表明近红外漫反射光谱可用于及时评价杏贮藏期间可溶性固形物和硬度的变化。  相似文献   

5.
应用近红外高光谱成像技术预测甘蔗可溶性固形物含量   总被引:5,自引:0,他引:5  
为了探究应用近红外高光谱成像技术对甘蔗内部可溶性固形物(SSC)预测的可行性,试验样本选择三种不同品种中的240个甘蔗节作为研究对象。通过高光谱成像系统获取甘蔗节的近红外光谱信息和图像信息,并分别探讨了光谱信息和图像纹理信息对甘蔗可溶性固形物预测的可行性。采用最小二乘回归(PLSR),最小二乘支持向量机(LS-SVM)及主成分回归(PCR)建模方法构建甘蔗可溶性固形物的预测模型。比较了连续投影算法(SPA)、无信息变量消除算法(UVE)及区间偏最小二乘(iPLS)特征提取方法对预测结果的影响。实验结果表明:基于甘蔗的光谱信息能实现可溶性固形物的预测,其中偏最小二乘回归模型的建模集和预测集的相关系数分别为0.879和0.843,均方根误差分别为0.644和0.742。通过UVE算法提取105个有效波长所建立的PLSR模型的建模集及预测集相关系数分别为0.860和0.813,均方根误差分别为0.693和0.810。  相似文献   

6.
SPXY算法的西瓜可溶性固形物近红外光谱检测   总被引:3,自引:0,他引:3  
可溶性固形物(SSC)是一种综合参数,主要包括糖、酸、纤维素、矿物质等成分,对评价果实成熟度和品质具有重要意义,影响果实口感、风味及货架期。西瓜可溶性固形物含量的无损快速检测对西瓜成熟度的确定、贮藏及运输过程中西瓜内部品质监控具有十分重要的意义,有助于提高西瓜生产效益和市场竞争力。在西瓜可溶性固形物含量的快速无损近红外光谱检测中,近红外漫透射的方式所需光源的能量大,同时大功率透射会对水果的内部品质产生影响;采用近红外漫反射方式的研究较少,但漫反射采集所需的能量小,有助于实现仪器小型便携化,成本低,同时避免透射引起的水果品质变化。以小型西瓜为研究对象,利用JDSU便携式近红外光谱仪采集西瓜样品瓜梗、瓜脐、赤道部位的近红外反射光谱,在976,1 186和1 453 nm附近有明显的吸收,利用偏最小二乘回归定量分析方法建立西瓜可溶性固形物的近红外光谱无损预测模型。首先,采用光谱-理化值共生距离(SPXY)算法对西瓜不同检测部位的样品集进行划分,以可溶性固形物含量为y变量,光谱为x变量,利用两种变量同时计算样品间距离,以保证最大程度表征样本分布,有效地覆盖多维向量空间,增加样本间的差异性和代表性,提高模型稳定性。将西瓜样品划分为51个校正集和15个预测集,校正集样本的SSC含量涵盖了预测集样本的SSC含量范围,且变异系数均小于9%,样品集划分合理,有助于建立稳健可靠的预测模型。其次,对比分析西瓜瓜梗、瓜脐、赤道检测部位的近红外反射光谱与可溶性固形物含量之间的定量模型的预测精度,结果得出西瓜赤道部位的反射光谱与可溶性固形物含量相关性较高,预测效果较好,预测集相关系数为0.629,预测集均方根误差为0.49%。对于不同检测部位获取的光谱信息所建立的近红外光谱SSC预测模型的精度问题,一方面与光谱的采集方式有关,另一方面与西瓜的产地、品种、成熟期等因素引起的其性状上的差异有关。在模型建立过程中根据实际情况确定西瓜的检测部位。最后,为提高西瓜赤道部位近红外反射光谱与可溶性固形物含量之间的预测模型精度,采用光谱预处理方法进行优化,结果得出经标准归一化预处理后,建立的偏最小二乘回归预测模型效果最佳,预测集相关系数为0.864,预测集均方根误差为0.33%,模型相关性较好,预测精度得到了很大提升。研究结果表明,近红外反射光谱检测小型西瓜赤道部位能很好预测其可溶性固形物含量,为实际生产中近红外光谱无损快速检测西瓜可溶性固形物含量及小型便携式仪器研发提供了技术储备。  相似文献   

7.
利用可见-近红外激光漫反射光谱图像法及化学计量学方法检测了苹果的可溶性固形物含量和硬度。为了消除苹果形状对品质检测的影响,分析了5个不同波长的激光(680,780,880,940和980 nm)照射在富士苹果果面形成的光斑图像,并通过一系列图像处理方法得出了的苹果形状修正算法。分别利用修正前后的光谱图像参数建立苹果可溶性固形物含量和硬度的偏最小二乘回归(PLSR)模型,模型预测值和真实值之间的相关系数从0.78和0.80分别提高到0.87和0.89。为了消除果面镜面反射对苹果内部品质检测的影响,文章提出了象素强度频率检测法,并比较了利用果面光斑图像中光强均值和不同强度对应的象素强度频率建立的苹果硬度和可溶性固形物含量的PLSR模型效果,得出象素强度频率的模型效果更好。苹果可溶性固形物含量和硬度PLSR模型中预测均方根误差(RMSEP)分别从1.28°Brix和8.23 N.cm-2降低到0.84°Brix和6.17 N.cm-2。  相似文献   

8.
可见-近红外光谱用于鲜食葡萄感官偏好的检测   总被引:2,自引:0,他引:2  
水果内部品质影响着消费者的感官偏好,直接决定消费者的购买倾向。为此,可见-近红外光谱技术检测巨峰葡萄内部品质以及感官偏好等级。试验比较了漫反射、透射两种光谱采集方式对葡萄内部品质的检测准确性,结果表明透射光谱更能表征巨峰葡萄的内部品质信息,偏最小二乘(PLS)模型对鲜食葡萄可溶性固形物、总酸度的预测均方根误差分别为0.598%brix,0.048 g·L-1。将鲜食葡萄的透射光谱主成分信息与消费者的感官偏好等级之间建立非线性分类模型,得到主成分法结合极限学习机(PCA-ELM)模型分类准确率最好,为78.7%。结果认为反映水果内部信息的光谱可用于消费者感官偏好的初步分类,但其间关系还有待进一步研究。  相似文献   

9.
不同贮藏期水蜜桃硬度及糖度的检测研究   总被引:1,自引:0,他引:1  
糖度和硬度作为水蜜桃的两个重要指标,决定其内部品质。在运输或售卖期间,水蜜桃果内水分流失,表面开始松软进而腐烂,内部品质发生变化。研究旨在探讨可见/近红外光谱预测水蜜桃不同贮藏期糖度和硬度的可行性,进一步预测水蜜桃的最佳贮藏期。采用漫透射和漫反射方式采集4个贮藏阶段的水蜜桃光谱,并测量糖度和硬度。分析了4个阶段水蜜桃的平均光谱,光谱强度随着贮藏天数增加而不断提高,且在650~680 nm区域内受果皮颜色及色素的变化产生波峰偏移。同时,分析了糖度和硬度的变化,糖度在贮藏期间逐渐提高,硬度在贮藏期间快速下降,最终糖度增加了3.31%,硬度下降了58.8%。采用多元散射校正、S-G卷积平滑、归一化处理及基线校正等预处理方法来减少噪声和误差对光谱的影响,并使用无信息变量消除(UVE)和连续投影算法(SPA)筛选特征波长,最后利用偏最小二乘回归(PLS)分别建立糖度和硬度的预测模型。分析糖度、硬度的PLS回归系数与平均光谱的波形发现,糖度的高回归系数分布在光谱多处,而硬度的该系数均在波峰波谷附近。SPA和UVE筛选的特征波长建立的糖度模型效果不佳,而硬度模型效果良好。结果表明,漫透射和漫反射检测方式下,糖度的最佳预测相关系数(Rp)及预测均方根误差(RMSEP)分别为0. 886,0.727和0.820,1.003,预处理方法分别是多元散射校正、平滑窗口宽度为3的S-G卷积平滑。此外,漫透射建立的硬度SPA-PLS模型,选用15个光谱变量,得到的Rp和RMSEP为0.798和0.976;而漫反射建立的UVE-PLS模型,选用113个光谱变量,得到的Rp和RMSEP为0.841和0.829。可以看出,漫透射方式预测水蜜桃贮藏期间的糖度更佳,而漫反射预测硬度更佳。利用可见/近红外光谱所建立的糖度和硬度预测模型,能够可靠地预测水蜜桃贮藏期内糖度和硬度的变化,对指导采摘、售卖时间和减少腐烂具有一定的参考价值。  相似文献   

10.
采用近红外(NIR)漫反射光谱法对新疆特色梨果库尔勒香梨的五种不同果(包括青头、粗皮、脱萼、宿萼、突顶果)的硬度进行测定。由于近红外光谱数据量大且原始光谱噪声明显、测定水果时散射严重等导致光谱建模时关键波长变量提取困难。以新疆库尔勒香梨为研究对象,为了有效地消除固体表面散射以及光程变化对NIR漫反射光谱的影响,首先采用标准正态变量变换(SNV)和多元散射校正(MSC)对库尔勒香梨的原始光谱进行预处理。为寻找适合近红外光谱检测库尔勒香梨硬度的最佳特征波长筛选方法,进行香梨近红外光谱的特征波长变量选择方法的比较与研究。研究比较了两种特征波长筛选方法对库尔勒香梨硬度偏最小二乘法(PLS)建模精度的影响。同时使用反向偏最小二乘(BiPLS)和遗传算法结合反向偏最小二乘(BiPLS-GA)在全光谱范围内筛选香梨硬度的特征波长变量,将校正均方根误差(RESMC)、预测均方根误差(RESMP)以及决定系数(R2)作为模型的评价标准,并最终确定最优波段选择方法及最佳预测模型。基于选择的特征波长变量建立的PLS模型(BiPLS-GA)与全光谱变量建立的PLS模型进行比较发现BiPLS-GA模型仅仅使用原始变量中6.6%的信息就获得了比全变量PLS模型更好的库尔勒香梨硬度的预测结果,其中R2,RMSEC和RMSEP分别为0.91,1.03和1.01。进一步与基于反向偏最小二乘算法(BiPLS)获得的特征变量建立的PLS模型比较发现,BiPLS-GA不仅可以去除原始光谱数据中的无信息变量,同时也能够对共线性的变量进行压缩去除,使得建模变量从301个减少到20个。极大地简化模型的同时有效地提高了模型的预测精准度和稳定性。因此该方法能够有效地用于近红外光谱数据变量的选择。证明了近红外光谱分析技术结合BiPLS-GA模型能够高效地选择出建模变量,去除与库尔勒香梨硬度无关的近红外光谱信息,显著地提高库尔勒香梨硬度定量模型的预测精度。这不仅为新疆地区特色梨果库尔勒香梨的快速、精确、无损优选分级提供一定的技术支持,同时也为基于近红外光谱分析技术预测水果内部品质的研究提供了参考。  相似文献   

11.
以桃、李及杏果实为材料,研究其干物质含量的近红外漫反射无损检测模型的建立方法。研究发现,桃、李及杏果实干物质预测模型的决定系数(r_P~2)分别为0.901、0.909及0.923,预测均方根误差(RMSEP)分别为0.365、0.401及0.465,相对分析误差(RPD_P)分别达2.9、3.2及3.1以上。结果表明,近红外漫反射光谱可用于准确、快速、无损定量3种水果中干物质含量。  相似文献   

12.
建立了牛肉基于TVB-N、菌落总数、pH值和肉色参数L*多个指标的储存期预测模型,利用可见近红外光谱(Vis/NIR)技术结合区间偏最小二乘(iPLS)和遗传算法(GA)建立了各个指标的PLS预测模型,实现了多指标综合无损快速预测4 ℃下牛肉的储存期。用iPLS和iPLS-GA提取有效波长变量建立PLS预测模型,以预测相关系数和预测标准差作为模型评价标准,结果表明用iPLS-GA选择变量建立的各个指标的PLS预测模型均优于全波段和iPLS组合的PLS模型。由多个指标的预测值和储存期的预测模型,对校正集和预测集样品储存期进行预测,其预测相关系数和标准差分别是0.903, 0.897和1.88, 2.24。说明利用光谱技术结合得出的储存期预测模型可以实现多指标综合预测牛肉储存期,为无损快速检测牛肉储存期或货架期提供了一种新方法。   相似文献   

13.
基于紫外差分吸收光谱技术,针对温度对烟气浓度测量的影响,提出一种非线性补偿方法.在紫外波段200-230nm波长范围内,以SO2和NO标准气体为研究对象,从50℃到90℃间隔10℃变化测量其吸收光谱,利用多项式拟合的方法计算气体差分吸收截面,研究温度与吸收截面的定性和定量关系.实验结果显示,不同波长点的两种气体吸收截面随温度变化呈非线性关系.采用非线性补偿修正后,SO2和NO的测量误差明显减小,该方法可提高烟气测量的准确度.  相似文献   

14.
温度环境下空间遥感光学系统成像质量的检测   总被引:1,自引:0,他引:1  
巩盾  田铁印  王红 《中国光学》2012,(6):602-609
在离轴三反射系统热光学理论分析的基础上,利用热光学实验测试了光学系统在不同热环境下的成像质量。将实测温度代入有限元模型,计算表征镜面变形的Zernike系数。将Zernike系数输入光学设计软件,复算光学系统的理论成像质量,并与测试结果进行对比分析。结果显示,理论复算值与实验实测值相吻合,证明了理论分析的正确性。试验检测表明,系统在Nquist频率下,18℃时的静态传递函数为0.247;14~21℃时的静态传递函数为0.221~0.254,满足系统成像质量要求。  相似文献   

15.
应用近红外漫反射光谱技术(波长为1100—2498nm,分辨率为2nm),以温县和郑州市郊的土壤为材料建立土壤水分含量分析系统。结果表明,优化各项参数后,光谱经过标准正态变换校正和一阶导数处理后,回归分析采用修正的偏最小二乘法(M PLS)得到的定标模型效果最佳。最终得到的预测方程定标相关系数(RSQ)、交叉验证标准误差(SECV)、交叉验证相关系数(1-VR)分别为0.98,0.92,0.97。数学模型经过验证样品集检验,预测相关系数达到0.96,达到了快速、准确分析土壤水分含量的要求。  相似文献   

16.
基于二维相关光谱的壶瓶枣室温贮藏硬度动力学模型研究   总被引:1,自引:0,他引:1  
为了实现鲜枣常温贮藏期的硬度实时监测并对贮藏时间进行预测,建立了室温下壶瓶枣贮藏期的近红外光谱硬度动力学模型。基于二维相关光谱技术,分析综合浓度影响下的壶瓶枣敏感波段,优选的敏感波段为904,980,1 072,1 200,1 630,1 941和2 215 nm。分析不同贮藏天数的壶瓶枣果肉平均硬度,并拟合出零级反应方程,模型的相关系数为0.991 3,标准误差为6.116×10-4。鲜枣的贮藏过程中,由于复杂的生理化学反应,主要物质的含量发生变化,并通过宏观的信息光谱特征和硬度得以体现。将敏感波段下的光谱信息和贮藏期的硬度指标进行信息耦合,建立壶瓶枣果肉硬度的偏最小二乘模型(partial least square, PLS),模型的预测精度RP为0.942 7,RMSEP为0.021 0。进而以敏感波段的吸光度为自变量,壶瓶枣果肉硬度指标为应变量,进行多元回归定量分析,建立近红外光谱硬度动力学模型,模型的拟合优度即相关系数为0.983 9,标准误差为0.024 9,并在此基础上建立壶瓶枣贮藏时间与近红外光谱的线性回归关系。研究表明,基于二维相关光谱的硬度动力学模型可以实现对壶瓶枣果肉硬度指标的快速、无损检测并实现其贮藏时间的预测。  相似文献   

17.
在pH7.2的Tris-HCl缓冲溶液中,采用紫外光谱和荧光光谱法研究了2种新型染料木素酯化修饰物,染料木素7-乙酰阿魏酸酯(GenA)和染料木素7,4′-二-乙酰阿魏酸酯(GenDA)与小牛胸腺DNA(ctDNA)的相互作用。随着ctDNA的加入,GenA与GenDA的紫外吸收和荧光光谱的强度均发生不同程度的降低。ctDNA对化合物的荧光猝灭为静态猝灭过程。在293K时化合物与ctDNA的结合常数分别为2.81×106L.mol-1和1.19×104L.mol-1。同时通过I-离子效应、离子强度、DNA熔点、粘度法等研究证实,在该实验条件下,GenA与ctDNA之间具有较强的作用,主要以嵌插方式结合;GenDA主要以沟槽方式与ctDNA作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号