首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究了Y2O3稳定的ZrO2(YSZ)氧离子传导膜H2S固体氧化物燃料电池性能。掺杂NiS、电解质、Ag粉和淀粉制备了双金属复合MoS2阳极催化剂,掺杂电解质、Ag粉和淀粉制备了复合NiO阴极催化剂,用扫描电镜对YSZ和膜电极组装(MEA)进行了表征,比较了不同电极催化剂的性能和极化过程,考察了不同温度对电池性能的影响。结果表明,双金属复合MoS2/NiS阳极催化剂在H2S环境下比Pt和单金属MoS2催化剂稳定,复合NiO阴极催化剂比Pt性能好,在电极催化剂中加入Ag可显著提高电极的导电性;与Pt电极相比,复合MoS2阳极和复合NiO阴极催化剂的过电位较小,阳极的极化比阴极侧小;温度升高,电池的电流密度与功率密度增加,电化学性能变好。在750℃、800℃、850℃和900℃及101.13 kPa时,结构为H2S、(复合MoS2阳极催化剂)/YSZ氧离子传导膜/(复合NiO阴极催化剂)、空气的燃料电池最大功率密度分别为30 mW/cm2、70 mW/cm2、155 mW/cm2及295 mW/cm2、最大电流密度分别为120 mA/cm2、240 mA/cm2、560 mA/cm2和890 mA/cm2。  相似文献   

2.
采用高温固相法制备了La0.75Sr0.25Cr0.5Mn0.5O3(LSCM)并利用XRD,SEM以及电化学阻抗谱(EIS)分别对粉体及电极进行研究。结果发现LSCM在C3H8-O2-N2混合气氛下能够保持很好的高温化学稳定性,且与电解质材料YSZ在1400℃空气气氛下不发生化学反应。电化学测试结果表明,阳极支撑型单室固体氧化物燃料电池Ni-YSZ|YSZ|LSCM在700℃、C3H8-O2-N2混合气氛下的短路电流密度达317 mA·cm-2,最大功率密度73 mW·cm-2。将LSCM与CGO形成梯度阴极,相同测试条件下,单室电池的短路电流密度为560 mA·cm-2,功率密度达到110 mW·cm-2,电池输出性能提高约50%。  相似文献   

3.
采用高温固相反应,以NH4VO3为钒源合成了化学计量式为(1-x)LiFe0.5Mn0.5PO4-xLi3V2(PO4)3/C (x=0,0.1,0.2,0.25,1)的钒改性磷酸锰铁锂正极材料.电化学测试表明钒改性能明显提高磷酸锰铁锂材料的充放电性能,其中x=0.2时得到的0.8LiFe0.5Mn0.5PO4-0.2Li3V2(PO4)3/C(标记为LFMP-LVP/C)材料电化学性能最好,其0.1C倍率时的放电比容量为141 mAh·g-1.X射线衍射(XRD)分析指出LFMP-LVP/C材料的微观结构为橄榄石型LiFe0.5Mn0.5PO4/C和NASICON型Li3V2(PO4)3组成的双相结构.能量色射X射线谱(EDS)分析结果指出,Fe、Mn、V、P元素在所合成材料中的分布非常均匀,表明所制备材料成分的均一性.Li3V2(PO4)3改性使材料的电导率明显提高.LiFe0.5Mn0.5PO4的电导率为1.9×10-8 S· cm-1,而LFMP-LVP材料电导率提高到2.7×10-7 S·cm-1.与纯Li3V2(PO4)3的电导率(2.3×10-7 S·cm-1)相近.电化学测试表明钒改性使LFMP-LVP/C材料充放电过程电极极化明显减小,从而电化学性能得到显著提高.本文工作表明Li3V2(PO4)3改性可成为提高橄榄石型磷酸盐锂离子电池正极材料电化学性能的一种有效方法.  相似文献   

4.
采用高温固相反应,以NH4VO3为钒源合成了化学计量式为(1-x)LiFe0.5Mn0.5PO4-xLi3V2(PO4)3/C(x=0,0.1,0.2,0.25,1)的钒改性磷酸锰铁锂正极材料.电化学测试表明钒改性能明显提高磷酸锰铁锂材料的充放电性能,其中x=0.2时得到的0.8LiFe0.5Mn0.5PO4-0.2Li3V2(PO4)3/C(标记为LFMP-LVP/C)材料电化学性能最好,其0.1C倍率时的放电比容量为141mAh·g-1.X射线衍射(XRD)分析指出LFMP-LVP/C材料的微观结构为橄榄石型LiFe0.5Mn0.5PO4/C和NASICON型Li3V2(PO4)3组成的双相结构.能量色射X射线谱(EDS)分析结果指出,Fe、Mn、V、P元素在所合成材料中的分布非常均匀,表明所制备材料成分的均一性.Li3V2(PO4)3改性使材料的电导率明显提高.LiFe0.5Mn0.5PO4的电导率为1.9×10-8S·cm-1,而LFMP-LVP材料电导率提高到2.7×10-7S·cm-1.与纯Li3V2(PO4)3的电导率(2.3×10-7S·cm-1)相近.电化学测试表明钒改性使LFMP-LVP/C材料充放电过程电极极化明显减小,从而电化学性能得到显著提高.本文工作表明Li3V2(PO4)3改性可成为提高橄榄石型磷酸盐锂离子电池正极材料电化学性能的一种有效方法.  相似文献   

5.
崔智  王超  沈水云  蒋峰景  章俊良 《电化学》2015,21(3):273-278
氢氧燃料电池的性能与质子交换膜的性能密切相关. 在燃料电池运行过程中,反应生成的水和加湿气体所含水的扩散渗透与膜内质子拖拽共同作用实现膜中水的平衡,影响膜的欧姆电阻,进而影响电池性能. 本文通过掺杂Pt/C对质子膜进行改性,并测试了改性膜的交流阻抗、吸水特性等物理性质和单电池性能及高频阻抗,说明由膜中的Pt/C催化剂原位催化渗透到膜中的氢气和氧气反应生成水,改善了电池低湿度运行时膜的含水率,从而降低膜电阻,提升电池性能.  相似文献   

6.
以研究与Sr,Mg掺杂LaGaO3(LSGM)电解质匹配的阳极材料为出发点,系统研究了Ce1-xTmxO2-δ(Tm=Cu,Mn,Fe)固溶体的晶体结构、热化学稳定性、电化学性能和单电池发电实验。柠檬酸法合成的Ce1-xTmxO2-δ化合物在x<0.2时均为单相材料,与LSGM电解质有良好的热化学相容性。采用交流阻抗法研究了阳极材料的电化学性能,金属元素掺杂可以显著地改善CeO2电化学性能,Fe元素掺杂阳极材料极化电阻最小,随着元素掺杂量的增加以及氢气增湿,极化电阻减小。采用电解质支撑结构单电池进行发电实验,在800℃时,以Ce0.8Fe0.2O2-δ作为阳极的单电池最高功率密度可达98 mW.cm-2,表明该材料作为IT-SOFC的阳极材料具有一定的可行性,有望成为适合LSGM电解质的阳极材料。  相似文献   

7.
碳纤维基PtSn催化剂直接乙醇燃料电池制备及性能研究   总被引:1,自引:1,他引:0  
采用自制的碳纤维基PtSn催化剂薄膜作为阳极催化剂,商用Pt/C作为阴极催化剂,Nafion 115膜作为质子交换膜,通过热压制成膜电极,组装平板型直接乙醇燃料单电池,搭建测试系统并进行性能的测试,研究了温度、乙醇浓度、溶液流量、进气流量等参数对DEFC的影响。结果表明,当乙醇溶液浓度为1.0 mol/L、溶液进样流量为1.0 mL/min、溶液温度为80 ℃、氧气进样流量为100 mL/min时结果较优,单电池的最高功率密度达18.2 mW/cm2。  相似文献   

8.
将聚苯并咪唑(PBI)与聚乙烯吡咯烷酮(PVP)共混, 制备了一系列PBI/PVP复合质子交换膜, 研究了不同PVP含量对PBI/PVP复合质子交换膜性能的影响. 研究结果表明, PVP的加入可有效提高PBI/PVP复合质子交换膜的吸水率及硫酸吸附量, 从而提高质子电导率, 与PBI原膜相比, PBI-PVP-5复合质子交换膜的结合酸含量可达2.47 mmol/g, 质子电导率达4.81 mS/cm, 选择性(3.12×105 S·min/cm3)远高于原膜(1.12×105 S·min/cm3). 电流密度为120 mA/cm2时, 电池的电压效率(VE)和能量效率(EE)均较PBI原膜提高了10%, 电池自放电时间长达307 h. PVP的加入为PBI系列钒液流电池隔膜提供了一个提高质子电导率的新思路.  相似文献   

9.
李赏  周芬  陈磊  潘牧 《电化学》2016,22(2):129
质子交换膜燃料电池的商业化应用迫切要求降低其Pt载量. 本文通过Pt/C氧还原电极的动力学模型计算,研究了Pt/C电极中的氧分布、生成电流以及满足实际应用的最小Pt载量. 结果表明:燃料电池Pt/C电极,阴极产生严重浓差极化的催化层厚度为40mm;功率密度达到1.4 W•cm-2(2.1 A•cm-2@0.67 V)的电池性能需要3mm左右的Pt/C阴极催化层,阴极Pt载量为0.122 mg•cm-2,即可使膜电极的阴极铂用量低于0.087 g•kW-1.  相似文献   

10.
利用逐步合成的方法,合成了一系列不同量硝酸处理的PtCo/C催化剂。通过燃料电池测试装置对催化剂进行了测试,结果表明PtCo/C催化剂在较低载量情况下,有着很好的性能:在50 kPa背压下,0.9 V下的电流密度达到44 mA·cm~(-2),0.8 V下的电流密度超过300 mA·cm~(-2);200 kPa背压下,最高功率密度超过1 300 mW·cm~(-2)。通过X射线衍射(XRD)、透射电子显微镜(TEM)对合成的PtCo/C催化剂的形貌、组成进行了表征。XRD结果表明,催化剂中,Pt以Pt_3Co和Pt颗粒形式存在。燃料电池测试结果表明,这一系列的催化剂中,经2 mL质量分数65%的浓硝酸配制的水溶液处理过的PtCo/C催化剂,具有最好的燃料电池性能以及良好的稳定性。  相似文献   

11.
磷酸掺杂的聚苯并咪唑复合膜在高温质子交换膜燃料电池中的应用  相似文献   

12.
钟理  Chuang Karl 《无机化学学报》2007,23(11):1875-1881
制备了硫化氢固体氧化物燃料电池的无机质子传导膜和膜-电极-组装(MEA)。用扫描电镜(SEM)和电化学阻抗(EIS)技术表征了无机质子传导膜和MEA的形貌与性能。研究了不同膜厚和掺杂或没有掺杂Li2WO4组分的传导膜和MEA的性能。结果表明,与没有掺杂Li2WO4组分制备的MEA相比,掺杂了Li2WO4组分制备的MEA的电导提高了一个数量级,掺杂了Li2WO4制备的MEA硫化氢燃料电池在操作条件下具有更好的化学稳定性和电化学性能。以Mo-Ni-S为主要成分的复合阳极、0.8 mm厚和组成为67wt% Li2SO4 + 8wt% Li2WO4 + 25wt% Al2O3复合材料制备的质子传导膜、NiO为主要组分的复合阴极构成的MEA硫化氢燃料电池,在650、700和750 ℃时,最大输出功率密度分别达到50、85和130 mW·cm-2,最大电流密度分别为200、350和480 mA·cm-2。  相似文献   

13.
为提高聚苯并咪唑(PBI)膜的抗氧化性能,以乙烯苄基氯(PVBC)作为PBI的大分子交联剂,并利用1H-1,2,4-三氮唑取代交联剂中的不稳定端基Cl,制备了交联型高温质子交换膜,考察了交联剂用量对膜的电化学性质的影响. 研究表明,膜中的交联结构有效提高了膜的抗氧化性能,并兼具优异的电导率及力学性能. 采用无增湿H2和O2对膜电极性能进行了测试,150 oC下电池最大功率密度达到0.82 W•cm-2.  相似文献   

14.
Polybenzimidazoles (PBIs) are among the polymers of choice to prepare membranes for high temperature polymer fuel cells. Poly-2,2'(2,6-pyridine)-5,5'-bibenzimidazole (PBI5N), doped with H(3)PO(4), and acid-doped PBI5N containing 10 wt% of imidazole-functionalized silica membranes were studied with thermogravimetric analysis, differential scanning calorimetry, dynamic-mechanical analysis, infrared spectroscopy, and broadband electric spectroscopy to examine the structure-property relationships. Key results show that: (1) doped PBI5N membranes show thermal decomposition starting at 120 °C, while pristine PBI5N is stable up to 300 °C; (2) the presence of filler increases the acid uptake and decreases the crystallinity of PBI5N; (3) the addition of phosphoric acid reduces the mechanical properties of the membrane, while the addition of filler has the opposite effect; (4) acid-doped membranes have conductivity values on the order of 10(-2)-10(-3) S cm(-1); and (5) membranes exhibit a Vogel-Tamman-Fulcher (VTF) type proton conduction mechanism, where proton hopping is coupled with the segmental motion of the polymer chain. Infrared spectroscopy combined with DFT quantum mechanical calculations was used to assign the experimental spectrum of PBI5N.  相似文献   

15.
采用微波合成法, 调整己二酸和2,6-吡啶二甲酸2种二酸单体的配比, 使其与联苯四胺进行三元共聚, 制备出一系列新型含脂肪链结构的聚苯并咪唑(PBI)类质子交换膜, 并用红外光谱、 热重分析进行了表征, 对膜的吸水率、 溶胀率、 质子传导率、 机械强度及抗氧化性能等进行了测试. 当己二酸与2,6-吡啶二甲酸的摩尔比为3: 2时, 所制备的PBI-C2膜掺杂磷酸后在160℃下的质子传导率可达30 mS/cm, 拉伸强度在常温下可达77.54 MPa, 断裂伸长率为39.25%, 最大储能模量为9.0623 MPa, 最大损耗模量为8.36 MPa, 玻璃化转变温度为360℃, 芬顿试验192 h后膜的降解率仅为0.21%, 表明PBI-C2膜在高温质子交换膜燃料电池中具有较好的应用前景.  相似文献   

16.
Summary: Fuel cells were designed for high temperature operations. Poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] (PBI) was synthesized in a solution of P2O5, CH3SO3H, and CF3SO3H. The PBI was dissolved in a mixture of CF3CO2H and H3PO4 and the solution was used for the preparation of Pt catalyst slurry for membrane electrode assembly. The single cell showed a current density of 280 mA · cm−2 at a cell voltage of 0.5 V with feeds of H2 and O2 at 160 °C and without external humidification.

  相似文献   


17.
铂催化氧还原反应过程中磷酸的影响及抑制磷酸吸附策略   总被引:1,自引:0,他引:1  
与低温(<100oC)质子交换膜燃料电池相比,磷酸掺杂PBI膜燃料电池可工作于100–200 oC,工作温度的提高有利于提高电极反应动力学速率、增加Pt催化剂对CO等毒物的耐受性,以及简化电池水管理等.然而,磷酸在Pt催化剂表面吸附较强,这将造成Pt一定程度的毒化.基于“第三体效应”,即在Pt表面预吸附某些小分子,可在一定程度上抑制磷酸吸附,然而预吸附分子同时也将占据Pt表面部分活性位点,因而Pt的催化性能最终由两个因素决定:磷酸抑制程度和预吸附分子在Pt表面的覆盖度.
  本文系统考察了Pt表面预吸附分子覆盖度和预吸附分子链长对其催化氧还原反应(ORR)活性的影响.首先,通过控制预吸附了胺类分子的Pt电极的电位,得到表面具有不同覆盖度的Pt电极,考察了0.1 mol/L H3PO4电解液中Pt电极对ORR的催化活性随预吸附分子覆盖度的变化规律;为分离磷酸吸附和修饰分子吸附本身对Pt催化活性的影响,对比了0.1 mol/L HClO4电解液中Pt电极对ORR的催化活性随预吸附分子覆盖度的变化规律.进一步对比研究了不同链长胺分子——正丁胺(BA)、正辛胺(OA)及十二胺(DA)等作为修饰分子对Pt/C催化剂电催化ORR活性的影响.结果表明,随修饰分子在Pt表面覆盖度提高,在0.1 mol/L HClO4溶液中,由于预吸附分子占据Pt部分活性位,修饰后光滑Pt电极表面的本征活性单调下降;而在0.1 mol/L H3PO4中,修饰后光滑Pt电极表面的ORR活性呈现先升高后降低的趋势,当预吸附分子覆盖度约为20%时,其ORR活性最高,为未修饰的光滑Pt电极表面的1.67倍.这表明预吸附分子有效抑制了磷酸的吸附,且当预吸附分子覆盖度约为20%时,预吸附分子对Pt表面的占据与其抑制磷酸吸附的作用达到最佳平衡点.然而,当修饰分子BA, OA和DA在Pt表面覆盖度分别为38.6%,26.1%和26.1%时, Pt/C在0.1 mol/L H3PO4中的ORR催化活性接近,分别为未经修饰Pt/C电催化剂的1.7,1.8和2.0倍,这表明预吸附分子链长对ORR催化活性影响较小,表面预吸附分子抑制磷酸吸附的策略对Pt/C催化剂也同样适用.同时, Pt/C电极经BA, OA和DA修饰后,其在0.1 mol/L HClO4中的比表面活性分别为未经修饰Pt/C电催化剂的1.0,1.1和1.3倍,与修饰后光滑Pt电极表面本征ORR活性变化规律不一致.然而,与Pt在HClO4电解质中的ORR活性相比, ORR的半波电位仍有大约123 mV的差距,今后还需继续从催化剂的角度,如调控Pt表面的吸附特性,或从创新电解质的角度,如有机磷酸电解质等出发解决磷酸毒化的问题.  相似文献   

18.
Inorganic/organic composite membranes have been prepared from polybenzimidazole and two different heteropolyacids; namely phosphotungstic acid and silicotungstic acid. The membranes were characterized using SEM, XRD, and proton conductivity. The conductivity of the composite membrane was relatively high when compared to PBI membrane. The fuel cell performance with the composite membranes doped with phosphoric acid was investigated using hydrogen. It was found that pre-treatment of PWA and SiWA influenced the fuel cell performance and that the performance was enhanced with the use of the composite membrane. However, from the electrode polarization and crossover current data it was revealed that the expected high performance of the fuel cell was not achieved because of voltage losses associated with contact resistance and poor ionic conductivity in the catalyst layer. The best performance of the fuel cell was achieved with a 40% SiWA/PBI composite membrane.  相似文献   

19.
高温质子交换膜燃料电池具有耐毒化,稳定性好的优势,是具有较强应用前景的一种能源转换装置。 本文制备了具有复合催化层结构的气体扩散电极,用于增强燃料电池阳极的催化性能。 在气体扩散电极中,将偏氟乙烯-六氟丙烯共聚物和聚苯基咪唑聚合物作为催化剂的粘结材料,调节了电极界面的浸润结构。 通过对电极表面形貌和润湿性的表征,发现该种结构的催化层孔隙率和粗糙度更高,双层结构的润湿性差别明显(接触角分别为149°和19°),这有利于形成稳定的三相反应界面。 测试结果表明,该种结构的催化层能够有效提高催化材料的利用效率,燃料电池对氢气燃料的峰值功率密度提高约22%。 与此同时,使用含一氧化碳质量浓度为10000和30000 mg/m3的氢气燃料,电池峰值功率密度能够分别保持82.1%和71.4%,证明该燃料电池对一氧化碳杂质保持了良好的耐毒性。  相似文献   

20.
直接甲醇燃料电池质子膜研究进展   总被引:3,自引:0,他引:3  
本文对直接甲醇燃料电池(DMFC)质子交换膜的要求及目前的研究状况作了简要的概述,特别是从基膜材料结构角度进行分类,较详细地介绍分析以Nafion膜为代表的全氟磺酸膜的各种改性研究及以PBI、PEEK、PSU等基膜材料为代表的聚芳环系列的DMFC质子交换膜的研究情况.总结了质子交换膜的一些研究方法,对直接甲醇燃料电池质子交换膜的发展前景进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号