首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《先进技术聚合物》2018,29(1):594-602
Phosphoric acid (PA)–doped polybenzimidazole (PBI) proton exchange membranes have received attention because of their good mechanical properties, moderate gas permeability, and superior proton conductivity under high temperature operation. Among PBI‐based film membranes, nanofibrous membranes withstand to higher strain because of strongly oriented polymer chains while exhibiting higher specific surface area with increased number of proton‐conducting sites. In this study, PBI electrospun nanofibers were produced and doped with PA to operate as high temperature proton exchange membrane, while changes in proton conductivity and morphologies were monitored. Proton conductive PBI nanofiber membranes by using the process parameters of 15 kV and 100 μL/h at 15 wt% PBI/dimethylacetamide polymer concentration were prepared by varying PA doping time as 24, 48, 72, and 96 hours. The morphological changes associated with PA doping addressed that acid doping significantly caused swelling and 2‐fold increase in mean fiber diameter. Tensile strength of the membranes is found to be increased by doping level, whereas the strain at break (15%) decreased because of the brittle nature of H‐bond network. 72 hour doped PBI membranes demonstrated highest proton conductivity whereas the decrease on conductivity for 96‐hour doped PBI membranes, which could be attributed to the morphological changes due to H‐bond network and acid leaking, was noted. Overall, the results suggested that of 72‐hour doped PBI membranes with proton conductivity of 123 mS/cm could be a potential candidate for proton exchange membrane fuel cell.  相似文献   

2.
Polybenzimidazole (PBI)/imidazole (Im) hybrid membranes were prepared from an organosoluble, fluorine-containing PBI with Im. The thermal decomposition of the PBI/Im hybrid membranes occurred at about 160 °C. The conductivities of the acid doped PBI/Im hybrid membranes increased with both the temperature and the Im content. The conductivity of acid doped PBI-40Im (molar ratio of Im/PBI = 40) reached 3.1 × 10−3 (S/cm) at 160 °C. The proton conductivities of PBI/Im hybrid membranes were over 2 × 10−3 (S/cm) at 90 °C and 90% relative humidity. The addition of Im could reduce the mechanical properties and methanol barrier ability of the PBI membranes.  相似文献   

3.
An amorphous, organosoluble, fluorine‐containing polybenzimidazole (PBI) was synthesized from 3,3′‐diaminobenzidine and 2,2‐bis(4‐carboxyphenyl)hexafluoropropane. The polymer was soluble in N‐methylpyrrolidinone and dimethylacetamide and had an inherent viscosity of 2.5 dL/g measured in dimethylacetamide at a concentration of 0.5 g/dL. The 5% weight loss temperature of the polymer was 520 °C. Proton‐conducting PBI membranes were prepared via solution casting and doped with different amounts of phosphoric acid. In the methanol permeability measurement, the PBI membranes showed much better methanol barrier ability than a Nafion membrane. The proton conductivity of the acid‐doped PBI membranes increased with increasing temperatures and concentrations of phosphoric acid in the polymer. The PBI membranes showed higher proton conductivity than a Nafion 117 membrane at high temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4508–4513, 2006  相似文献   

4.
Phosphoric acid doped poly (2, 2′‐(m‐phenylene)‐5, 5′‐bibenzimidazole) (PBI) membranes were prepared by dissolving PBI powders in 85% phosphoric acid at 190–200°C and then promoting gelation of the PBI by cooling the solutions to ?18°C. The extent of acid doping of the PBI membranes was controlled by immersing the membrane in aqueous phosphoric acid solutions of different concentrations (acid de‐doping). The process of the acid de‐doping was faster than acid doping of membrane cast from N,N‐dimethylacetamide (DMAc). The de‐doping process caused shrinkage of the PBI membrane and thus an increase in the membrane strength due to the packing of PBI chains according to the X‐ray diffraction analysis. The tensile stress and proton conductivity of the obtained PBI membranes with different acid doping levels were measured. For a PBI (ηIV: 0.58 dL · g?1) membrane with an acid doping level of 7.0 (molar number of doped acid per mole repeat unit of PBI), the stress at break and proton conductivity at 120°C without humidification were 2.6 MPa and 5.1 × 10?2 S · cm?1, respectively. These results were comparable to those of the membranes cast from PBI solutions in DMAc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This work investigates the effects of polymer solids content and macromolecular structure on the high temperature creep behavior of polybenzimidazole (PBI) gel membranes imbibed with phosphoric acid (PA) after preparation via a polyphosphoric acid (PPA) mediated sol‐gel process Low‐solids, highly acid‐doped PBI membranes demonstrate outstanding fuel cell performance under anhydrous, ambient pressure, and high temperature (120–200 °C) operating conditions. However, PBI membranes are susceptible to creep under compressive loads at elevated temperatures, so their long‐term mechanical durability is a major concern. Here, we report results for the creep behavior of PBI membranes subject to compression at 180 °C. For para‐ and meta‐PBI homopolymers, increasing polymer solids content results in lower creep compliance and higher extensional viscosity, which may be rationalized by increasing chain density in the sol‐gel network. Comparing various homo‐ and copolymers at similar solids loading, differences in creep behavior may be rationalized in terms of chain–chain and chain‐solvent interactions that control macromolecular solubility and stiffness in the PA solvent. The results demonstrate the feasibility of improving the mechanical properties of PA‐doped PBI membranes by control of polymer solids content and rational design of PBI macromolecular structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1527–1538  相似文献   

6.
A high molecular weight, thermally and chemical stable hexafluoroisopropylidene containing polybenzimidazole (6F‐PBI) was synthesized from 3,3′‐diaminobenzidine (TAB) and 2,2‐bis(4‐carboxyphenyl) hexafluoropropane (6F‐diacid) using polyphosphoric acid (PPA) as both the polycondensation agent and the polymerization solvent. Investigation of polymerization conditions to achieve high molecular weight polymers was explored via stepwise temperature control, monomer concentration in PPA, and final polymerization temperature. The polymer characterization included inherent viscosity (I.V.) measurement and GPC as a determination of polymer molecular weight, thermal and chemical stability assessment via thermo gravimetric analysis and Fenton test, respectively. The resulting high molecular weight polymer showed excellent thermal and chemical stability. Phosphoric acid doped 6F‐PBI membranes were prepared using the PPA process. The physiochemical properties of phosphoric acid doped membranes were characterized by measuring the phosphoric acid doping level, mechanical properties, and proton conductivity. These membranes showed higher phosphoric acid doping levels and higher proton conductivities than the membranes prepared by the conventional membrane fabrication processes. These membranes had sufficient mechanical properties to be easily fabricated into membrane electrode assemblies (MEA) and the prepared MEAs were tested in single cell fuel cells under various conditions, with a focus on the high temperature performance and fuel impurity tolerance. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4064–4073, 2009  相似文献   

7.
A series of ionically crosslinked composite membranes were prepared from sulfonated poly(arylene ether sulfone) (SPAES) and polybenzimidazole (PBI) via in situ polymerization method. The structure of the pristine polymer and the composite membranes were characterized by FT-IR. The performance of the composite membranes was characterized. The study showed that the introduction of PBI led to the reduction of methanol swelling ratio and the increase of mechanical properties due to the acid–base interaction between the sulfonic acid groups and benzimidazole groups. Moreover, the oxidative stability and thermal stability of the composite membranes were improved greatly. With the increase of PBI content, the methanol permeability coefficient of the composite membranes gradually decreased from 1.59 × 10−6 cm2/s to 1.28 × 10−8 cm2/s at 30 °C. Despite the fact that the proton conductivity decreased to some extent as a result of the addition of PBI, the composite membrane with PBI content of 5 wt.% still showed a proton conductivity of 0.201 S/cm at 80 °C which could actually meet the requirement of proton exchange fuel cell application. Furthermore, the composite membranes with PBI content of 2.5–7.5 wt.% showed better selectivity than Nafion117 taking into consideration the methanol swelling ratio and proton conductivity comprehensively.  相似文献   

8.
磷酸掺杂的聚苯并咪唑复合膜在高温质子交换膜燃料电池中的应用  相似文献   

9.
Composite membranes based on poly(vinyl alcohol) (PVA) and graphene oxide (GO) were prepared by solution-casting method to be used as proton exchange membranes (PEMs) in fuel cell (FC) applications. Bisulfonation was employed as a strategy to enhance the proton conductivity of these membranes. First, a direct sulfonation of the polymer matrix was accomplished by intra-sulfonation of the polymer matrix with propane sultone, followed by the inter-sulfonation of the polymer chains using sulfosuccinic acid (SSA) as a crosslinking agent. Furthermore, the addition of graphene oxide (GO) as inorganic filler was also evaluated to enhance the proton-conducting of the composite membranes. These membranes were fully characterized by scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and tensile tests. Besides, the proton conductivity of these membranes in a fully hydrated state was also analyzed by electrochemical impedance spectroscopy (EIS). The effect of the intra- and inter-sulfonation of the polymer matrix on the structural, morphological, thermal and mechanical properties of the membranes were determined. Increasing the density of sulfonic acid groups in the membranes resulted in a trade-off between a better proton conductivity (improving from 0.26 to 1.00 mS/cm) and a decreased thermal and mechanical stability. In contrast, the incorporation of GO nanoparticles into the polymer matrix improved the thermal and mechanical stability of both bisulfonated composite membranes. The proton conductivity appreciably increased by the combination of bisulfonation and introduction of GO nanoparticles into the polymer matrix. The sPVA/30SSA/GO composite membrane exhibited a proton conductivity of 1.95 mS/cm at 25 °C. The combination of the GO nanoparticles with the chemical bisulfonation approach of PVA allows thus assembling promising proton exchange membrane candidates for fuel cell applications.  相似文献   

10.
Proton conducting polymer membranes have become crucial due their applications in fuel cells as source of clean energy. In this work, we synthesized poly(glycidyl methacrylate) (PGMA) by conventional free radical polymerization of GMA using azobisisobutyronitrile (AIBN) as initiator. PGMA was modified with 5-aminotetrazole by ring opening of the epoxide group. The composition of the polymer was studied by elemental analysis (EA) and the structures were characterized by FT-IR and solid 13C NMR spectra. Thermogravimetry analysis (TG) and differential scanning calorimetry (DSC) were employed to examine the thermal stability and homogeneity of the materials, respectively. Polymers were doped with H3PO4 at several stoichometric ratios. The effect of doping on the proton conductivity was studied via impedance spectroscopy. Maximum proton conductivity of acid-doped PGMA-aminotetrazole was found to be 0.01 S/cm at 150 °C in the anhydrous state.  相似文献   

11.
将聚苯并咪唑(PBI)与聚乙烯吡咯烷酮(PVP)共混, 制备了一系列PBI/PVP复合质子交换膜, 研究了不同PVP含量对PBI/PVP复合质子交换膜性能的影响. 研究结果表明, PVP的加入可有效提高PBI/PVP复合质子交换膜的吸水率及硫酸吸附量, 从而提高质子电导率, 与PBI原膜相比, PBI-PVP-5复合质子交换膜的结合酸含量可达2.47 mmol/g, 质子电导率达4.81 mS/cm, 选择性(3.12×105 S·min/cm3)远高于原膜(1.12×105 S·min/cm3). 电流密度为120 mA/cm2时, 电池的电压效率(VE)和能量效率(EE)均较PBI原膜提高了10%, 电池自放电时间长达307 h. PVP的加入为PBI系列钒液流电池隔膜提供了一个提高质子电导率的新思路.  相似文献   

12.
Proton exchange membrane (PEM) is a key component of vanadium redox flow battery (VRB), and its proton/vanadium selectivity plays an important role in the performance of a VRB single cell. Commercially available perfluorosulfonic acid (Nafion) membranes have been widely used due to their excellent proton conductivity and favorable chemical resistance. However, the large pore size micelle channels formed by the pendant sulfonic acid groups lead to the excessive penetration of vanadium ions, which seriously affects the coulombic efficiency (CE) of the single cell and accelerates the self-discharge rate of the battery. Additionally, the expensive cost of Nafion is also an important reason to limit its large-scale application. In this paper, the dense and low-cost hydrocarbon polymer polybenzimidazole (PBI) is used as the matrix material of the PEM, which is doped with phosphotungstic acid (PWA) to acquire excellent proton conductivity, and the intrinsic high resistance of PBI for vanadium ions is helpful to obtain high proton/vanadium selectivity. Considering the enormous water solubility of PWA and its easy leaching from membrane, organic polymer nano-Kevlar fibers (NKFs) are utilized as the anchoring agent of PWA, which achieves good anchoring effect and solves the problem of the poor compatibility between inorganic anchoring agent and the polymer matrix. The formation of PWA functionalized NKFs was characterized by scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The anchoring stability of NKFs for PWA was evaluated by UV-Vis spectroscopy. The characterizations including water uptake, swelling ratio, ion exchange capacity, proton conductivity, vanadium ion permeability and ion selectivity were performed to evaluate the basic properties of the membranes. At the same time, the charge-discharge, self-discharge and cycle performance of single cell assembled with the composite membrane and recast Nafion were tested at various current densities from 40 to 100 mA∙cm-2. Simple tuning for the filling amount of NKFs@PWA gives the composite membrane superior ion selectivity including an optimal value of 3.26 × 105 S∙min∙cm-3, which is 8.5 times higher than that of recast Nafion (0.34 × 105 S∙min∙cm-3). As a result, the VRB single cell assembled with the composite membrane exhibits higher CE and significantly lower self-discharge rate compared with recast Nafion. Typically, the CE of the VRB based on PBI-(NKFs@PWA)-22.5% membrane is 97.31% at 100 mA∙cm-2 while the value of recast Nafion is only 90.28%. The open circuit voltage (VOC) holding time above 0.8 V of the single cell assembled with the composite membrane is 95 h, which is about 2.4 times as long as that of recast Nafion-based VRB. The utilization of PBI as a separator for VRB can effectively suppress the penetration of vanadium ions, achieve higher proton/vanadium selectivity and superior battery performance as well as reduce the cost of the PEM, which will play an active role in the promotion of VRB applications.  相似文献   

13.
Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross‐linked with dichloromethyl phosphinic acid (DCMP). FT‐IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP. The produced cross‐linked membranes show increased mechanical strength, making it possible to achieve higher phosphoric acid doping levels and therefore higher proton conductivity. Oxidative stability is significantly improved and thermal stability is sufficient in a temperature range of up to 250°C, i.e. within the temperature range of operation of PBI‐based fuel cells. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Polybenzimidazole (PBI) membranes were doped in phosphoric acid solutions of different concentrations at room temperature. The doping chemistry was studied using the Scatchard method. The energy distribution of the acid complexation in polymer membranes is heterogeneous, that is, there are two different types of sites in PBI for the acid doping. The protonation constants of PBI by phosphoric acid are found to be 12.7 L mol?1 (K1) for acid complexing sites with higher affinity, and 0.19 L mol?1 (K2) for the sites with lower affinity. The dissociation constants for the complexing acid onto these two types of PBI sites are found to be 5.4 × 10?4 and 3.6 × 10?2, respectively, that is, about 10 times smaller than that of aqueous phosphoric acid in the first case but 5 times higher in the second. The proton conducting mechanism is also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2989–2997, 2007  相似文献   

15.
A series of soluble, benzimidazole‐based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm?1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK‐only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm?1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640–3650, 2010  相似文献   

16.
通过构筑基于含不饱和双键的磺化聚芳醚酮(Allyl-SPAEK)与芳醚型聚苯并咪唑(PBI)的半互穿聚合 物网络(IPN), 获得综合性能优异的可用于高温质子交换膜燃料电池的PBI/Allyl-SPAEK复合膜材料. 在对 Allyl-SPAEK和PBI的分子进行设计和合成的基础上, 采用溶液共混-浇铸方法, 基于UV辐照交联, 获得了由丙烯基生成的共价键和咪唑基-磺酸基形成的强酸碱相互作用组成的IPN新体系, 并系统研究了新型复合膜的热、 机械性能和质子传导率. 结果表明, 具有PBI/Allyl-SPAEK半互穿聚合物网络的复合膜具有较高的质子 传导率和力学性能, 在同等磷酸吸附水平和测试条件下优于PBI膜. 在磷酸吸附水平为13.0左右时, PBI/ Allyl-SPAEK复合膜的最大拉伸强度达到12.1 MPa, 杨氏模量达到131.5 MPa, 是同等磷酸吸附水平下 PBI 膜的2.04倍. 在200 ℃时, 两种PBI/Allyl-SPAEK复合膜的质子传导率均达到 200 mS/cm以上, 比PBI膜传导率提高了38%.  相似文献   

17.
采用微波合成法, 调整己二酸和2,6-吡啶二甲酸2种二酸单体的配比, 使其与联苯四胺进行三元共聚, 制备出一系列新型含脂肪链结构的聚苯并咪唑(PBI)类质子交换膜, 并用红外光谱、 热重分析进行了表征, 对膜的吸水率、 溶胀率、 质子传导率、 机械强度及抗氧化性能等进行了测试. 当己二酸与2,6-吡啶二甲酸的摩尔比为3: 2时, 所制备的PBI-C2膜掺杂磷酸后在160℃下的质子传导率可达30 mS/cm, 拉伸强度在常温下可达77.54 MPa, 断裂伸长率为39.25%, 最大储能模量为9.0623 MPa, 最大损耗模量为8.36 MPa, 玻璃化转变温度为360℃, 芬顿试验192 h后膜的降解率仅为0.21%, 表明PBI-C2膜在高温质子交换膜燃料电池中具有较好的应用前景.  相似文献   

18.
A high-temperature proton exchange membrane with high proton conductivity over a wide humidity range still remains a challenge. PBI dendrimer containing triazine rings (TPBI) was synthesized to approach this aim considering its high content of hygroscopic terminal groups and of larger free volume. A novel proton conductor previously synthesized (zirconium 3-sulfopropyl phosphonate, ZrSP) was doped due to its good proton conductivity over a wide humidity range. TPBI was post-crosslinked with a tetrafunctional epoxy resin (N,N,N′,N′-tetraglycidyl-4,4′-diaminodiphenylmethane, TGDDM) to enhance the mechanical stability at low cross-linking degrees, which allowed high doping levels of ZrSP, and thus, high conductivity. The prepared membranes (TPBI-TGDDM/ZrSP) showed good thermal stability, high proton conductivity over wide humidity range, and good dimensional stability. At suitable degrees of branching, TPBI-TGDDM/ZrSP exhibited superior mechanical property, oxidative stability, methanol barrier property, and membrane selectivity than its linear analog (mPBI-TGDDM/ZrSP). As ZrSP instead of PA was applied as the proton conductor, TPBI-TGDDM/ZrSP showed good durability of proton conductivity, especially in comparison with TPBI-TGDDM/PA, which highly retarded decline in conductivity caused by PA leaking. The proton conductivity at 180 °C of TPBI(20)-TGDDM(10)/ZrSP(50) achieved 142, 84.2 and 23.6 mS cm?1 at 100%, 50%, and 0 RH, respectively.  相似文献   

19.
Single wall carbon nanotube (SWNT) was carboxylated to introduce –OH, –COOH, and –NH2 on the surfaces, which made it possible for polybenzimidazole (PBI) to be in situ synthesized. The resulting SWNT doped PBI (SWNT/PBI) was characterized by Fourier transform infrared spectroscopy thermogravimetric analysis. The conductivity of membrane casting from PBI/N,N-dimethylacetamide (DMAc) and SWNT/PBI/DMAc solution was also investigated. Owing to the incorporation of SWNT, the SWNT/PBI membranes achieve a maximum conductivity of 3.70 × 10?4 Ω.cm?1 at 200°C.  相似文献   

20.
A series of new polybenzimidazoles (PBIs) with pendant amino groups have been synthesized via condensation polymerization of 5‐aminoisophthalic acid (APTA), isophthalic acid (iPTA), and 3,3′diaminobenzidine (DAB) in polyphosphoric acid at 190 °C for 20 h. The molar ratios between APTA and iPTA were controlled at 1:0, 2:1, 1:1, and 1:2, respectively, and the copolymerization reactions were carried out via both random and sequenced manners. The resulting polymers showed good solubility in some organic solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethylacetamide (DMAc). The pendant amino groups of the PBIs were utilized to react with two kinds of crosslinkers, 1,3‐dibromopropane and ethylene glycol diglycidyl ether, to yield various crosslinked membranes. The crosslinked membranes generally showed good mechanical properties even at high‐phosphoric acid (PA) doping levels, whereas the uncrosslinked membranes highly swelled or even dissolved in PA. Fenton's test revealed that the crosslinked PBI membranes had excellent radical oxidative stability. The proton conductivities of the PA‐doped crosslinked membranes increased with an increase in temperature and high‐proton conductivity up to 0.14 S/cm at 0% relative humidity at 170 °C was achieved. The membranes with high PA‐doping levels, good mechanical properties, and high‐proton conductivities have been successfully developed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号