首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specific features of plastic–strain macrolocalization at the stage of the parabolic law of strain hardening in samples from industrial zirconium–based alloys are considered. It is shown that in predeformed blanks, zones with a different character of plastic–strain localization are formed. It is also shown that the strain–localization macropattern can be used as a characteristic of the susceptibility of a material to further plastic form–changing, for example, upon tube rolling. The sign of fracture of alloys upon plastic deformation is revealed. The scale effect in the formation of localizedplastic–flow zones is shown and studied.  相似文献   

2.
The sliding friction of solids at high speed and under heavy load may be accompanied by a transition to the plastic or fluid state in the friction contact zone [1]. The stage corresponding to a developed fluid layer is investigated without taking into account the plastic deformation of the rubbing bodies; it is assumed that all the heat released is expended exclusively on melting the solid. Previous attempts to investigate this stage theoretically have been based on the approximation of a fluid layer of constant thickness and the use of the heat balance equation [1, 2]. Here, the velocity and temperature profiles are approximated by relations quadratic in the transverse coordinate with coefficients that depend on the longitudinal coordinate. These are determined from the boundary conditions and the integral relations of boundary layer theory. The relations obtained are used to determine the rate at which a hot rotating ring melts through a block of ice.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 30–34, May–June, 1990.  相似文献   

3.
The behavior of plastic flow curves and patterns of plastic strain localization were studied for tension of samples of Zr — 1% Nb (É110 alloy) and Zr — 1% Nb — 1.3% Sn — 0.4% Fe (É635 alloy) were studied. The relationship of the localization kinetics with the strain hardening law in plastic flow and transition to fracture is established. The dislocation microstructure of the alloys in strain localization and prefracture zones is examined.  相似文献   

4.
The traditional yield criteria of plasticity such as Mises, Tresca, etc. make use of averaged macroparameters while mesomechanics consideration is based on the physical notion of plastic deformation mechanisms. They may involve the development of plastic shears on the surfaces and interfaces of internal structure elements involving stress concentration and relaxation. A criterion of plastic flow is proposed; it is based on the stress–strain state in a cell of computational grid as well as in the neighboring cells. An algorithm of plastic shear generation is developed for the progressive propagation of the plastic shears over the crystal. Test calculations of the crystal behavior under tension are made and the results are presented.  相似文献   

5.
In crystalline materials, the experimental observation of the localization of plastic strains in particular directions is generally restricted to the surface of a sample containing some hundreds of grains, because of the difficulties underlying microstructural analysis. In these conditions, the determination of the morphological characteristics of localization can be limited by the poor statistical representativity of the domain of observation. The purpose of this work is to extend the analysis of localization – localization bands or else – to the 3D elastoplastic strain fields of a high-resolution representative volume element of a polycrystal.  相似文献   

6.
An important feature of the high-velocity deformation of solids is the localization of deformation, one of the causes of which may be the nonisothermal instability of plastic flow [1–6]. In connection with the intensive development of high-velocity technology in the treatment of materials, the investigation of the criteria for nonisothermal stability of processes of plastic deformation is of fundamental interest, since in certain cases they determine the optimum technological regimes [5]. The critical values of deformation velocities, above which the effects of thermal instability becomes decisive in the process of deformation of solids, are estimated by semiempirical methods in [1]. The non-boundary-value problem of the criteria for nonisothermal instability is analyzed in [2] for the point of view of flow stability in the so-called coupled formulation. The latter means that the heat-conduction equation is added to the basic equations determining the dynamics of an elastoplastic medium. The problem is solved in [6] in an analogous formulation, but for flow averaged over the spatial coordinate. The solution of the boundary-value problem for one-dimensional flow in this formulation is given in the present paper.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 133–138, May–June, 1986.  相似文献   

7.
A lattice Boltzmann model is developed to simulate the one-dimensional (1D) unsteady state concentration profiles, including breakthrough curves, in a fixed tubular bed of non-porous adsorbent particles. The lattice model solves the 1D time dependent convection–diffusion–reaction equation for an ideal binary gaseous mixture, with solute concentrations at parts per million levels. The model developed in this study is also able to explain the experimental adsortption/desorption data of organic vapours (toluene) on silica gel under varying conditions of temperature, concentrations and flowrates. Additionally, the programming code written for simulating the adsorption breakthrough is modified with minimum changes to successfully simulate a few flow problems, such as Poiseuille flow, Couette flow, and axial dispersion in a tube. The present study provides an alternative numerical approach to solving such types of mass transfer related problems.  相似文献   

8.
Summary A rational finite element algorithm for capturing localized plastic deformation due to softening and/or non-associated plastic flow is devised. The incremental relations are based on implicit integration. In each increment it is important to use a carefully designed modified Newton iteration procedure in conjunction with a start solution whose calculation is based on a diagnostic bifurcation analysis. The algorithm performs successfully for a finite element mesh that is biased in the sense that the element sides are prealigned with the anticipated localization zone which is demonstrated for a slope stability problem.
Finite-Element-Berechnung von örtlichen plastischen Verformungen
Übersicht Die Konstruktion eines Algorithmus, der im Zusammenhang mit der Methode der Finiten Elemente örtliche plastische Verformungen als Folge von Materialentfestigung und/oder nichtassoziiertem plastischen Fließen erfaßt, wird beschrieben. Die inkrementellen Gleichungen ergeben sich aus der Verwendung eines impliziten Integrationsverfahrens. In jedem Inkrement wird ein sorgfältig entwickeltes, modifiziertes Newton-Iterationsverfahren verwendet, dessen erste Lösungsabschätzung auf einer diagnostischen Analyse des Verzweigungsproblems beruht. Am Beispiel einer Böschungsstabilitätsungtersuchung wird gezeigt, daß der Algorithmus erfolgreich ist, wenn das verwendete Finite-Elemente-Netz so ausgerichtet ist, daß die Elementseiten der erwarteten Versagenzone folgen.


Presented at the workshop on Numerical Methods for Localization and Bifurcation of Granular Bodies, held at the Technical University of Gdansk (Poland), September 25–30, 1989  相似文献   

9.
In this work, non-equilibrium molecular dynamics simulations are used to generate the flow of linear polymer chains (monomer-springs with FENE potential) and a Lennard–Jones fluid (Newtonian fluid) through a contraction–expansion (4:1:4) geometry. An external force field simulating a constant pressure gradient upstream the contraction region induces the flow, where the confining action of the walls is represented by a Lennard–Jones potential. The equations of motion are solved through a multiple-step integration algorithm coupled to a Nosé-Hoover dynamics [S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511–519], i.e., to simulate a thermostat, which maintains a constant temperature. In this investigation, we assume that the energy removed by the thermostat is related to the viscous dissipation along the contraction–expansion geometry. A non-linear increasing function between the pressure drop and the mean velocity along the contraction for the linear molecules is found, being an order of magnitude larger than that predicted for the Lennard–Jones fluid. The pressure drop of both systems (the linear molecules and Lennard–Jones fluid) is related to the dissipated energy at the contraction entry. The large deformation that the linear molecules experience and the evolution of the normal stress at the contraction entry follow a different trajectory in the relaxation process past the contraction, generating large hysteresis loops. The area enclosed by these cycles is related to the dissipated energy. Large shear stresses developed near the re-entrant corners as well as the vortex formation, dependent on the Deborah number, are also predicted at the exit of the contraction. To our knowledge, for the first time, the excessive pressure losses found in experimental contraction flows can be explained theoretically.  相似文献   

10.
The transient flow produced in a stationary gas when an intense beam of radiation falls on a plane surface is studied. A flow pattern is proposed and approximate relations are derived for finding the momentum produced by sufficiently long irradiation of the body. The calculations are compared with available experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2. pp. 196–199. March–April, 1977.  相似文献   

11.
The emission spectrum of the boundary-layer vapor on the interval 3800–6600 Å is presented for a specimen of asbestos-filled plastic in the air-plasma flow created by an electrodeless high-frequency discharge. The temperature profile in the boundary layer has been measured in the neighborhood of the stagnation point. A model of the boundary layer on an ablating specimen is proposed and the convective component of the heat flow to it is estimated.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 25–29, March–April, 1972.  相似文献   

12.
Transformation plasticity in ceria-stabilized tetragonal zirconia polycrystals due to the stress-induced tetragonal-to-monoclinic martensitic transformation under tension and bending is studied by moiré interferometry. The whole fringe patterns includingu fields andv fields are acquired. According to these patterns, the distributions of transformation plasticity in transformation zones are obtained, and the phenomenon of plastic flow localization for transformation is revealed. The above work provides a significant experimental foundation for establishing transformation constitutive relations The project supported by the National Natural Science Foundation of China  相似文献   

13.
An anomalous plastic deformation observed during the phase transformation of steels was implemented into the finite element modeling. The constitutive equations for the transformation plasticity originally proposed by Greenwood and Johnson [Greenwood, G.W., Johnson, R.H., 1965. The deformation of metals under small stresses during phase transformation. Proc. Roy. Soc. A 283, 403] and further extended by Leblond et al. [Leblond, J.B., Mottet, G., Devaux, J.C., 1986a. A theoretical and numerical approach to the plastic behavior of steels during phase transformations, I. Derivation of general relations. J. Mech. Phys. Solids 34, 395–409; Leblond, J.B., Mottet, G., Devaux, J.C., 1986b. A theoretical and numerical approach to the plastic behavior of steels during phase transformations, II. Study of classical plasticity for ideal-plastic phases. J. Mech. Phys. Solids 34, 411–432; Leblond, J.B., Devaux, J., Devaux, J.C., 1989a. Mathematical modeling of transformation plasticity in steels, I: case of ideal-plastic phases. Int. J. Plasticity 5, 511–572; Leblond, J.B., 1989b. Mathematical modeling of transformation plasticity in steels, II: coupling with strain hardening phenomena. Int. J. Plasticity 5, 573–591] were modified to consider the thermo-mechanical response of generalized multi-phase steel during phase transformations from austenite at high temperature. An implicit numerical solution procedure to calculate the plastic deformation of each constituent phase was newly proposed and implemented into the general purpose implicit finite element program via user material subroutine. The new algorithms include efficient calculation of consistent tangent modulus for the transformation plasticity and application of general anisotropic yield functions without limitation to the isotropic yield function. Besides the thermo-elastic–plastic constitutive equations, non-isothermal transformation kinetics was characterized by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation and additivity relationship for the diffusional transformation, while the model proposed by Koistinen and Marburger was used for the diffusionless transformation. Numerical verifications for the continuous cooling experiments under various loading conditions were conducted to demonstrate the applicability of the developed numerical algorithms to the high carbon steel SK5.  相似文献   

14.
Sheet metal forming processes generally involve large deformations together with complex loading sequences. In order to improve numerical simulation predictions of sheet part forming, physically-based constitutive models are often required. The main objective of this paper is to analyze the strain localization phenomenon during the plastic deformation of sheet metals in the context of such advanced constitutive models. Most often, an accurate prediction of localization requires damage to be considered in the finite element simulation. For this purpose, an advanced, anisotropic elastic–plastic model, formulated within the large strain framework and taking strain-path changes into account, has been coupled with an isotropic damage model. This coupling is carried out within the framework of continuum damage mechanics. In order to detect the strain localization during sheet metal forming, Rice’s localization criterion has been considered, thus predicting the limit strains at the occurrence of shear bands as well as their orientation. The coupled elastic–plastic-damage model has been implemented in Abaqus/implicit. The application of the model to the prediction of Forming Limit Diagrams (FLDs) provided results that are consistent with the literature and emphasized the impact of the hardening model on the strain-path dependency of the FLD. The fully three-dimensional formulation adopted in the numerical development allowed for some new results – e.g. the out-of-plane orientation of the normal to the localization band, as well as more realistic values for its in-plane orientation.  相似文献   

15.
高强度钢板热成形本构理论与实验分析   总被引:1,自引:0,他引:1  
马宁  胡平  武文华  申国哲  郭威 《力学学报》2011,43(2):346-354
热成形(热冲压)过程中硼钢的热、力、相变耦合关系是研究热成形理论的基础, 同时也是决定热成形工艺及数值模拟准确性的关键因素. 对热成形硼钢进行高温拉伸及淬火实验: 硼钢板材试样在奥氏体化(950℃)后保温一定时间, 然后在连续冷却的同时施加拉伸力, 记录此过程中力、位移、膨胀量及温度的变化. 通过对不同冷却速率及不同拉伸力情况下上述物理量的变化规律及微观组织性能的分析, 研究硼钢相变过程中的热、力、相变耦合关系. 建立了硼钢相变过程中的热、力、相变耦合模型. 通过引入混合定律对热成形过程中的多相材料热力学参数和力学性能进行等效分析; 对热成形应变组成及其形成机理进行了分析, 引入了相变体积应力及相变塑性应力等新概念. 硼钢高温流动应力采用修改的Norton-Hoff形式, 并通过实验确定了流动应力的材料常数. 在此基础上将热、力、相变耦合关系引入热成形本构方程中, 分别建立了高强度钢板热成形的全量形式及增量形式本构方程. 对U形零部件热成形过程进行了数值模拟, 并与实验结果进行比较, 结果证明建立的本构理论的有效性.   相似文献   

16.
A calculation is carried out for a spherical explosive charge in elastic-plastic materials with different yield points. Velocity and stress profiles are shown for several instants of time. The zone of increase of internal energy of the material, due to plastic flow, is shown. The values of the energy in the cavity and also the kinetic and plastic energies of the medium are calculated. Comparison with an experiment carried out with an explosion in aluminum [1] showed satisfactory agreement between the calculated and experimental velocity profile at the free surface.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 156–162, July–August, 1973.The authors thank V. N. Rodionov for interest in the work.  相似文献   

17.
A calculation model was developed, and the heat– and mass–transfer characteristics in a laminar air—vapor—droplet flow moving in a round tube were studied numerically. The distributions of parameters of the two–phase flow over the tube radius were obtained for varied initial concentrations of the gas phase. The calculated heat and mass transfer is compared to experimental data and calculations of other authors. It is shown that evaporation of droplets in a vapor—gas flow leads to a more intense heat release as compared to a one–species vapor—droplet flow and one–phase vapor flow  相似文献   

18.
The results of investigating hot-fluid cavitating flow in a pipe with a local contraction are presented for a broad temperature interval (water from cold to near-boiling) and various cavitation regimes — from the initial (bubble) to the supercavitation regime. Experimental relations for the amplitudes of the fluctuations and the fundamental frequencies are presented for a Venturi tube with various diffusers and for diaphragms of various dimensions. A flow model which takes into account the fluctuations of the vapor pressure in the cavity and, moreover liquid-cavity mass transfer effects is presented. It is shown that for a given flow geometry there is a limiting Jakob number below which the self-oscillating regime is impossible at any cavitation numbers.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 124–133, May–June, 1993.  相似文献   

19.
A unified numerical method is developed in this article for the analysis of deformations and stresses in elastic–plastic rotating disks with arbitrary cross-sections of continuously variable thickness and arbitrarily variable density made of nonlinear strain-hardening materials. The method is based on a polynomial stress–plastic strain relation, deformation theory in plasticity and Von Mises’ yield condition. The governing equation is derived from the basic equations of the rotating disks and solved using the Runge–Kutta algorithm. The proposed method is applied to calculate the deformations and stresses in various rotating disks. These disks include solid disks with constant thickness and constant density, annular disks with constant thickness and constant density, nonlinearly variable thickness and nonlinearly variable density, linearly tapered thickness and linearly variable density, and a combined section of continuously variable thickness and constant density. The computed results are compared to those obtained from the finite element method and the existing approaches. A very good agreement is found between this research and the finite element analysis. Due to the simplicity, effectiveness and efficiency of the proposed method, it is especially suitable for the analysis of various rotating disks.  相似文献   

20.
This paper is devoted to the formulation of a micromechanics-based constitutive model for granular materials under relatively low confining pressure. The constitutive formulation is performed within the general framework of homogenization for granular materials. However, new rigorous stress localization laws are proposed. Some local constitutive relations are established under the consideration of irreversible thermodynamics. Macroscopic plastic deformation is obtained by considering local plastic sliding in a limit number of families of contact planes. The plastic sliding at each contact plane is described by a non-associated plastic flow rule, taking into account pressure sensitivity and normal dilatancy. Nonlinear elastic deformation related to progressive compaction of contacts is also taken into account. Material softening is described by involving damage process related to degradation of microstructure fabric. The proposed model is applied to some typical granular materials (sands). The numerical predictions are compared with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号