首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Liu L  Law WC  Yong KT  Roy I  Ding H  Erogbogbo F  Zhang X  Prasad PN 《The Analyst》2011,136(9):1881-1886
Recently, multimodal nanoparticles integrating dual- or tri-imaging modalities into a single hybrid nanosystem have attracted plenty of attention in biomedical research. Here, we report the fabrication of two types of multimodal micelle-encapsulated nanoparticles, which were systematically characterized and thoroughly evaluated in terms of their imaging potential and biocompatibility. Optical and magnetic resonance (MR) imaging probes were integrated by conjugating DOTA-gadolinium (Gd) derivative to quantum dot based nanomicelles. Two amphiphilic block copolymer micelles, amine-terminated mPEG-phospholipid and amine-modified Pluronic F127, were chosen as the capping agents because of their excellent biocompatibility and ability to prevent opsonization and prolong circulation time in vivo. Owing to their different hydrophobic-hydrophilic structure, the micellar aggregates exhibited different sizes and protection of core QDs. This work revealed the differences between these nanomicelles in terms of the stability over a wide range of pH, along with their cytotoxicity and the capacity for chelating gadolinium, thus providing a useful guideline for tailor-making multimodal nanoparticles for specific biomedical applications.  相似文献   

2.
Multifunctional nanoparticles for multimodal imaging and theragnosis   总被引:1,自引:0,他引:1  
Nanomedicine is the biomedical application of nanoscale materials for diagnosis and therapy of disease. Recent advances in nanotechnology and biotechnology have contributed to the development of multifunctional nanoparticles as representative nanomedicine. They were initially developed to enable the target-specific delivery of imaging or therapeutic agents for biomedical applications. Due to their unique features including multifunctionality, large surface area, structural diversity, and long circulation time in blood compared to small molecules, nanoparticles have emerged as attractive preferences for optimized therapy through personalized medicine. Multimodal imaging and theragnosis are the cutting-edge technologies where the advantages of nanoparticles are maximized. Because each imaging modality has its pros and cons, the integration of several imaging agents with different properties into multifunctional nanoparticles allows precise and fast diagnosis of disease through synergetic multimodal imaging. Moreover, nanoparticles are not only used for molecular imaging but also applied to deliver therapeutic agents to the disease site in order to accomplish the simultaneous imaging and therapy called theragnosis. This tutorial review will highlight the recent advances in the development of multifunctional nanoparticles and their biomedical applications to multimodal imaging and theragnosis as nanomedicine.  相似文献   

3.
Novel organic–inorganic hybrid nanoparticles consisting of polymer–hydrogel nanoparticles (nanogels) and iron oxide were developed for potential biomedical applications. Hybrid nanoparticles were prepared by a simple procedure using polysaccharide nanogels as a reactive site for iron oxide formation. The hybrid nanoparticles have a narrow size distribution with a diameter of approximately 30 nm and show high colloidal stability. These nanohybrid particles could be used as a contrast medium for magnetic resonance imaging or for magnetic hyperthermia therapy.  相似文献   

4.
The unique properties of magnetic nanocrystals provide them with high potential as key probes and vectors in the next generation of biomedical applications. Although superparamagnetic iron oxide nanocrystals have been extensively studied as excellent magnetic resonance imaging (MRI) probes for various cell trafficking, gene expression, and cancer diagnosis, further development of in vivo MRI applications has been very limited. Here, we describe in vivo diagnosis of cancer, utilizing a well-defined magnetic nanocrystal probe system with multiple capabilities, such as small size, strong magnetism, high biocompatibility, and the possession of active functionality for desired receptors. Our magnetic nanocrystals are conjugated to a cancer-targeting antibody, Herceptin, and subsequent utilization of these conjugates as MRI probes has been successfully demonstrated for the monitoring of in vivo selective targeting events of human cancer cells implanted in live mice. Further conjugation of these nanocrystal probes with fluorescent dye-labeled antibodies enables both in vitro and ex vivo optical detection of cancer as well as in vivo MRI, which are potentially applicable for an advanced multimodal detection system. Our study finds that high performance in vivo MR diagnosis of cancer is achievable by utilizing improved and multifunctional material properties of iron oxide nanocrystal probes.  相似文献   

5.
《中国化学快报》2021,32(8):2405-2410
Developing low toxicity and multifunctional theranostic nanoplatform is the key for precise cancer diagnosis and treatment.Herein,an inorganic-organic hybrid nanocomposite is designed by modifying zirconium dioxide(ZrO_2) with polydopamine(PDA) followed by doping Mn~(2+) ions and functionalizing with Tween 20(Tween-ZrO_2@PDA-Mn~(2+)) for multimodal imaging and chemo-photothermal combination therapy.The as-prepared nanocomposite exhibits good biocompatibility in vitro and in vivo.Specifically,it can be employed as a multifunctional platform not only for computed tomography(CT)imaging and T_1-weighted magnetic resonance(MR) imaging,but also for efficient chemotherapeutic drug doxorubicin hydrochloride(DOX) loading.Importantly,because of the pronounced photothermal conversion performance and controllable DOX release ability triggered by the near-infrared(NIR)irradiation and acidic pH,the synergistic effect between photothermal the rapy and chemotherapy results in an enhanced cancer treatment efficacy in vivo.Our work provides a high-performance inorganicorganic hybrid nanotheranostic platform for chemo-photothermal cancer therapy guided by CT and MR imaging.  相似文献   

6.
This research reports the versatile synthetic strategies for hybrid PBCA microbubbles as contrast agents and drug carriers loaded with fluorescent dyes and magnetic nanoparticles serving in vitro cell labelling and in vivo target imaging. These multifunctional probes therefore prove their potential biomedical applications in cancer diagnostics and treatment.  相似文献   

7.
杜凯  朱艳红  徐辉碧  杨祥良 《化学进展》2011,23(11):2287-2298
多功能磁性纳米粒由于其独特的性质而受到广泛的关注。磁性纳米粒可以与荧光探针、生物靶向分子或抗肿瘤药物等相结合实现磁性纳米粒的多功能化,因此在多模式成像、癌症的靶向诊断与治疗中有较好的应用前景。本文介绍了磁性纳米粒的合成以及多功能磁性纳米粒的构建方法,重点介绍了核壳型、哑铃型和组合杂化型三种不同类型多功能磁性纳米粒的合成方法。多功能磁性纳米粒通常具有粒径小、超顺磁性以及荧光等独特性质,在此基础上对纳米粒表面进行稳定化和靶向性修饰后即可在多模式成像、特异性靶向药物输送、基因转染等生物医学领域得到应用。最后指出了当前研究中需要解决的问题。  相似文献   

8.
Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).  相似文献   

9.
Silica-coated nanocomposites of magnetic nanoparticles and quantum dots   总被引:4,自引:0,他引:4  
Quantum dots (QDs) and magnetic nanoparticles (MPs) are of interest for biological imaging, drug targeting, and bioconjugation because of their unique optoelectronic and magnetic properties, respectively. To provide for water solubility and biocompatibility, QDs and MPs were encapsulated within a silica shell using a reverse microemulsion synthesis. The resulting SiO2/MP-QD nanocomposite particles present a unique combination of magnetic and optical properties. Their nonporous silica shell allows them to be surface modified for bioconjugation in various biomedical applications.  相似文献   

10.
We describe the preparation and characterization of hybrid block copolymer nanoparticles (NPs) for use as multimodal carriers for drugs and imaging agents. Stable, water-soluble, biocompatible poly(ethylene glycol)-block-poly(epsilon-caprolactone) NPs simultaneously co-encapsulating hydrophobic organic actives (beta-carotene) and inorganic imaging nanostructures (Au) are prepared using the flash nanoprecipitation process in a multi-inlet vortex mixer. These composite nanoparticles (CNPs) are produced with tunable sizes between 75 nm and 275 nm, narrow particle size distributions, high encapsulation efficiencies, specified component compositions, and long-term stability. The process is tunable and flexible because it relies on the control of mixing and aggregation timescales. It is anticipated that the technique can be applied to a variety of hydrophobic active compounds, fluorescent dyes, and inorganic nanostructures, yielding CNPs for combined therapy and multimodal imaging applications.  相似文献   

11.
Because of their multifunctionality and unique magnetic properties, superparamagnetic iron oxide nanoparticles (SPIONs) have been recognized as very promising materials for various biomedical applications. The main difficulty with the use of SPIONs as multimodal bioimaging agents is their lack of fluorescence. Since cells can act as extremely efficient filters for the elution of surface-bound fluorescent tags with nanoparticles, the surface loaded fluorescence dyes significantly decay after a short period of time. Here, for the first time, we introduce novel, engineered multimodal SPIONs with a permanent fluorescence capability, the study of which can lead to a deeper understanding of biological processes at the biomolecular level, greatly influencing molecular diagnostics, imaging and therapeutic applications.  相似文献   

12.
Iron oxide nanoparticles are used in vivo as contrast agents in magnetic resonance imaging. Their widely used polymer coatings are directly involved in their biocompatibility and avoid magnetic aggregation. As these polymer brushes also limit their tissular diffusion due to important hydrodynamic sizes, this work looks to obtain particles coated with thin layers of organic biocompatible molecules. Coating molecules were chosen depending on their fixation site on iron cores; carboxylates, sulfonates, phosphates, and phosphonates, and, among them, analogs of the phosphorylcholine. Two coating procedures (dialysis and exchange resins purification) were evaluated for hydrodynamic size, total iron concentration, electrophoretic mobility, and colloidal stability. Furthermore, a complementary test on stainless steel plates evaluated the contamination by competition of phosphonates as a rough estimation of the biocompatibility of the particles. Coating with bisphosphonates, the more interesting fixation moiety, leads to small (less than 15 nm) and stable objects in a wide range of pH including the neutrality. From stability data, the coating density was evaluated at around 1.6 molecules per nm(2). Including a quaternary ammonium salt to the coating molecule lowers their electrophoretic mobility. Moreover, this type of coating protects steel plates against contamination without significant desorption. All these properties allow further developments of these nanoparticles for biomedical applications. Copyright 2001 Academic Press.  相似文献   

13.
Au-Fe3O4 heterostructures including dumbbell-like dimer, core-shell structure, and flower-type nanoparticles (NPs), attract much attention due to their multiple modifiable surfaces and unique properties coming from either Au or Fe3O4 nanoparticles. This review focuses on the preparation methods and biomedical applications of these heterogenous NPs in the fields of catalysis, assay, multimodal imaging, and combination therapy.  相似文献   

14.
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.  相似文献   

15.
Polyhedral oligomeric silsesquioxanes (POSS) have attracted considerable attention in the design of novel organic-inorganic hybrid materials with high performance capabilities. Features such as their well-defined nanoscale structure, chemical tunability, and biocompatibility make POSS an ideal building block to fabricate hybrid materials for biomedical applications. This review highlights recent advances in the application of POSS-based hybrid materials, with particular emphasis on drug delivery, photodynamic therapy and bioimaging. The design and synthesis of POSS-based materials is described, along with the current methods for controlling their chemical functionalization for biomedical applications. We summarize the advantages of using POSS for several drug delivery applications. We also describe the current progress on using POSS-based materials to improve photodynamic therapies. The use of POSS for delivery of contrast agents or as a passivating agent for nanoprobes is also summarized. We envision that POSS-based hybrid materials have great potential for a variety of biomedical applications including drug delivery, photodynamic therapy and bioimaging.  相似文献   

16.
Theranostic nanomedicine that integrates diagnostic and therapeutic agents into one nanosystem has gained considerable momentum in the field of cancer treatment. Among diverse strategies for achieving theranostic capabilities, surface-nanopore engineering based on mesoporous silica coating has attracted great interest because of their negligible cytotoxicity and chemically active surface that can be easily modified to introduce various functional groups(e.g.,-COOH,-NH_2,-SH, etc.) via silanization, which can satisfy various requirements of conjugating biological molecules or functional nanoparticles. In addition,the nanopore-engineered biomaterials possess large surface area and high pore volume, ensuring desirable loading of therapeutic guest molecules. In this review, we comprehensively summarize the synthetic procedure/paradigm of nanopore engineering and further broad theranostic applications. Such nanopore-engineering strategy endows the biocompatible nanocomposites(e.g., Au,Ag, graphene, upconversion nanoparticles, Fe_3O_4, MXene, etc.) with versatile functional moieties, which enables the development of multifunctional nanoplatforms for multimodal diagnostic bio-imaging, photothermal therapy, photodynamic therapy,targeted drug delivery, synergetic therapy and imaging-guided therapies. Therefore, mesoporous silica-based surface-nanopore engineering integrates intriguing unique features for broadening the biomedical applications of the single mono-functional nanosystem, facilitating the development and further clinical translation of theranostic nanomedicine.  相似文献   

17.
Optical imaging plays a growing role in modern biomedical research and clinical applications due to its high sensitivity, superb spatiotemporal resolution and minimal hazards. Lanthanide‐doped nanoparticles (LDNPs), as a classical category of luminescent materials, exhibit promising photostability, near‐infrared (NIR)‐excited frequency up‐/down‐converting capabilities, emission fine‐tuning and multispectral features, which have greatly promoted the endeavors of deeper and clearer diagnostics in complex living conditions. This review focuses on the recent advances of LDNP‐based multipurpose imaging studies using upconversion, downshifting, lifetime, photoacoustic and multimodal nanoprobes in the NIR (650–1000 nm) and the second near‐infrared window (NIR‐II, 1000–1700 nm). The principle and design of various functional, activatable, multiplexing or multimodal lanthanide‐imaging nanoprobes (LINPs) as well as representative biophotonic applications are summarized in detail. In addition, the future perspectives and challenges for facilitating LINPs to clinical translations are discussed.  相似文献   

18.
19F magnetic resonance imaging (19F MRI) is useful for monitoring particular signals from biological samples, cells, and target tissues, because background signals are missing in animal bodies. Therefore, highly sensitive 19F MRI contrast agents are in great demand for their practical applications. However, we have faced the following challenges: 1) increasing the number of fluorine atoms decreases the solubility of the molecular probes, and 2) the restriction of the molecular mobility attenuates the 19F MRI signals. Herein, we developed novel multifunctional core–shell nanoparticles to solve these issues. They are composed of a core micelle filled with liquid perfluorocarbon and a robust silica shell. These core–shell nanoparticles have superior properties such as high sensitivity, modifiability of the surface, biocompatibility, and sufficient in vivo stability. By the adequate surface modifications, gene expression in living cells and tumor tissue in living mice were successfully detected by 19F MRI.  相似文献   

19.
Advanced multifunctional microcapsules have revealed great potential in biomedical applications owing to their tunable size, shape, surface properties, and stimuli responsiveness. Polysaccharides are one of the most acceptable biomaterials for biomedical applications because of their outstanding virtues such as biocompatibility, biodegradability, and low toxicity. Many efforts have been devoted to investigating novel molecular design and efficient building blocks for polysaccharide‐based microcapsules. In this Personal Account, we first summarize the common features of polysaccharides and the main principles of the design and fabrication of polysaccharide‐based microcapsules, and further discuss their applications in biomedical areas and perspectives for future research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号