首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Janus nanoparticles (JNPs) offer unique features, including the precisely controlled distribution of compositions, surface charges, dipole moments, modular and combined functionalities, which enable excellent applications that are unavailable to their symmetrical counterparts. Assemblies of NPs exhibit coupled optical, electronic and magnetic properties that are different from single NPs. Herein, we report a new class of double-layered plasmonic–magnetic vesicle assembled from Janus amphiphilic Au-Fe3O4 NPs grafted with polymer brushes of different hydrophilicity on Au and Fe3O4 surfaces separately. Like liposomes, the vesicle shell is composed of two layers of Au-Fe3O4 NPs in opposite direction, and the orientation of Au or Fe3O4 in the shell can be well controlled by exploiting the amphiphilic property of the two types of polymers.  相似文献   

2.
Bacitracin‐conjugated superparamagnetic iron oxide (Fe3O4) nanoparticles were prepared by click chemistry and their antibacterial activity was investigated. After functionalization with hydrophilic and biocompatible poly(acrylic acid), water‐soluble Fe3O4 nanoparticles were obtained. Propargylated Fe3O4 nanoparticles were then synthesized by carbodiimide reaction of propargylamine with the carboxyl groups on the surface of the iron oxide nanoparticles. By further reaction with N3‐bacitracin in a CuI‐catalyzed azide–alkyne cycloaddition, the magnetic Fe3O4 nanoparticles were modified with the peptide bacitracin. The functionalized magnetic nanoparticles were characterized by powder X‐ray diffraction, X‐ray photoelectron spectroscopy, TEM, zeta‐potential analysis, FTIR spectroscopy and vibrating‐sample magnetometry. Cell cytotoxicity tests indicate that bacitracin‐conjugated Fe3O4 nanoparticles show very low cytotoxicity to human fibroblast cells, even at relatively high concentrations. In view of the antibacterial activity of bacitracin, the biofunctionalized Fe3O4 nanoparticles exhibit an antibacterial effect against both Gram‐positive and Gram‐negative organisms, which is even higher than that of bacitracin itself. The enhanced antibacterial activity of the magnetic nanocomposites allows the dosage and the side effects of the antibiotic to be reduced. Due to the antibacterial effect and magnetism, the bacitracin‐functionalized magnetic nanoparticles have potential application in magnetic‐targeting biomedical applications.  相似文献   

3.
Sonochemistry uses ultrasound to improve or modify chemical reactions. Sonochemistry occurs when the ultrasound causes chemical effects on the reaction system, such as the formation of free radicals, that intensify the reaction. Many studies have investigated the synthesis of nanomaterials by the sonochemical method, but there is still very limited information on the detailed characterization of these physicochemical and morphological nanoparticles. In this comprehensive review, recent advances in the sonochemical synthesis of nanomaterials based on iron oxide nanoparticles (Fe3O4NP), gold nanoparticles (AuNP) and iron oxide-coated gold nanoparticles (Fe3O4@Au NP) are discussed. These materials are the most studied materials for various applications, such as medical and commercial uses. This review will: (1) address the simple processing and observations on the principles of sonochemistry as a starting point for understanding the fundamental mechanisms, (2) summarize and review the most relevant publications and (3) describe the typical shape of the products provided in sonochemistry. All in all, this review’s main outcome will provide a comprehensive overview of the available literature knowledge that promotes and encourages future sonochemical work.  相似文献   

4.
《Arabian Journal of Chemistry》2020,13(11):7598-7608
Zirconia ceramics have attained much consideration owing to the amazing mechanical strength and white color. These properties provide an opportunity for the use in biomedical applications. In the present study, an application oriented sol-gel route was adapted for synthesis of zirconia nanoparticles. ZrOCl2·8H2O was used as a precursor, iron oxide (Fe3O4) nanoparticles (pH 2 & pH 9) as a stabilizer and de-ionized water was used as a solvent. Sol-gel synthesized iron oxide stabilized zirconia nanoparticles were prepared by varying concentrations of iron oxide nanoparticles in the range of 2–10 wt%. X-ray diffraction results showed mixed phases at all wt% with acidic pH value, while pure tetragonal phase of zirconia was observed for stabilization with 6 wt% basic iron oxide. Maximum value of dielectric constant (~80 at log f = 4) and minimum value of tangent loss (~0.66 at log f = 4) were observed for zirconia stabilized with basic 6 wt% iron oxide. Maximum value of hardness (1410 ± 10 HV) along with high fracture toughness were observed with optimized stabilization. Very weak hemolytic activity and maximum scavenging (~76) antioxidant activity was observed under optimized conditions. Thus, it can be suggested that optimized nanoparticles, i.e. tetragonal zirconia stabilized with 6 wt% of basic Fe3O4, can be further useful for therapeutical and pharmaceutical applications.  相似文献   

5.
Superparamagnetic iron oxide particles with average size less than 20 nm were prepared by chemical co‐precipitation method in the air atmosphere. After that, polydimethyldiallyl ammonium chloride (PDDA) was used for wrapping iron oxide particles to obtain the core/shell nanocomposites. The parameters influencing properties of iron oxide particles and iron oxide/PDDA nanocomposites were investigated and optimized. The prepared iron oxide and nanocomposites were characterized by X‐ray diffraction (XRD) measurement, transmission electron microscopy (TEM), particle size and Zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometry (VSM), respectively. It was found that the iron oxide particles are cubic inverse spinel Fe3O4 with spherical shape. Superparamagnetic behavior of Fe3O4 with 73.114 emu/g is produced with NH4OH as precipitator, and decreased to 58.583 emu/g for Fe3O4/PDDA nanocomposites. The Zeta potential of nanocomposites is positive value. The results showed that Fe3O4/PDDA nanocomposites have excellent future using as a carrier for bonding with some negative charged particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
以1-十八烯作为高沸点溶剂, 在磁性粒子表面沉积量子点获得新型的磁性荧光Fe3O4-CdSe 纳米异质结构. 首先以乙酰丙酮铁(Fe(acac)3)为前驱体, 二苯醚为溶剂, 油酸为表面活性剂和油胺(OAm)为表面活性剂兼还原剂, 通过溶剂热法制备单分散性的Fe3O4 纳米粒子. 然后以1-十八烯为高沸点溶剂, CdO 为镉源,TOP-Se为硒源, 十六胺为表面活性剂以及硬脂酸为生长促进剂和成核剂制备得到新型的Fe3O4-CdSe纳米异质结构. 通过透射电镜(TEM), 傅里叶变换红外(FTIR)光谱, X射线衍射(XRD)谱, X射线光电子能谱(XPS)分析仪, 振动样品磁强计(VSM), 紫外-可见(UV-Vis)光谱和光致发光(PL)等手段对Fe3O4-CdSe 纳米复合材料的结构和性能进行表征. 结果表明, CdSe纳米粒子成功地吸附在Fe3O4纳米粒子表面, 并沿着c轴生长, 形成了宽3.6 nm, 长分别为14.5 和32.5 nm的新型枣核状和钉子状的异质结构体. 这种新型的Fe3O4-CdSe纳米复合材料是由磁铁矿Fe3O4和六方形的CdSe棒状结构组成, 具有较好的荧光性能和超顺磁性. 随着CdSe棒长度的增加, 荧光吸收峰向长波方向移动. Fe3O4纳米粒子, 枣核状和钉子状的Fe3O4-CdSe纳米复合材料的饱和磁化强度分别是57.80, 40.76和31.10 emu·g-1.  相似文献   

7.
One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.  相似文献   

8.
Au‐Fe3O4 nanoparticles were widely used as nanoplatforms for biologic applications through readily further functionalization. Dopamine (DA)‐coated superparamagnetic iron oxide (SPIO) nanoparticles (DA@Fe3O4) have been successfully synthesized using a one‐step process by modified coprecipitation method. Then 2–3 nm gold nanoparticles were easily conjugated to DA@Fe3O4 nanoparticles by the electrostatic force between gold nanoparticles and amino groups of dopamine to afford water‐soluble Au‐Fe3O4 hybrid nanoparticles. A detailed investigation by dynamic light scatting (DLS), transmission electron microscopy (TEM), fourier transform infrared (FT‐IR) and X‐ray diffraction (XRD) were performed in order to characterize the physicochemical properties of the hybrid nanoparticles. The hybrid nanoparticles were easily functionalized with a targeted small peptide A54 (AGKGTPSLETTP) and fluorescence probe fluorescein isothiocyanate (FITC) for liver cancer cell BEL‐7402 imaging. This simple approach to prepare hybrid nanoparticles provides a facile nanoplatform for muti‐functional derivations and may be extended to the immobilization of other metals or bimolecular on SPIO surface.  相似文献   

9.
Iron oxide nanoparticles have attracted much attention because of their superparamagnetic properties and their potential applications in many fields such as magnetic storage devices, catalysis, sensors, superparamagnetic relaxometry (SPMR), and high-sensitivity biomolecule magnetic resonance imaging (MRI) for medical diagnosis and therapeutics. In this study, iron oxide nanoparticles (Fe2O3 NPs) have been synthesized using a taranjabin (camelthorn or persian manna) aqueous solution. The synthesized Fe2O3 NPs were identified through powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), field energy scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), vibrating-sample magnetometer (VSM) and Raman technics. The results show that the nanoparticles have a hexagonal structure with 20 to 60 nm in size. The cytotoxic effect of the synthesized nanoparticles has been tested upon application against lung cancer cell (A549) lines. It was found that there is no cytotoxic activity at lower concentrations of 200 μg/mL. The ability of the synthesized nanoparticles for lead removal in wastewaters was tested. Results show that highest concentration of adsorbent (50 mg/L) has maximum removal efficiency (96.73 %). So, synthesized Fe2O3 NPs can be a good candidate to use as heavy metals cleaner from contaminated waters.  相似文献   

10.
The first part describes a novel technique for dispersing ultrafine species of iron oxide of controlled particle size (radii < 150 ») within the cage structure of a zeolite matrix, with the aid of organometals such as ferrocene and iron pentacarbonyl. The particle size and magnetic ordering within the iron clusters are elucidated via 57Fe Mössbauer spectrocopy and via their superparamagnetic behavior displayed by magnetization curves obtained as a function of the magnetic field and temperature. The second part of the paper describes the magnetic properties of iron species (Fe3C, Fe3O4, etc.) dispersed in amorphous glass-like carbons. These are obtained by the polymerization of furfuryl alcohol-containg ferrocene derivatives and by the subsequent pyrolysis of the polyfurfuryl alcohol. The technological relevance and applications of the materials studied in Parts I and II of the paper are pointed out.  相似文献   

11.
Spinel-type NiFe2O4 exhibited the highest NO reduction activity among base-metal oxides under simulated exhaust of a gasoline-powered vehicle. The structure–activity relationship of iron oxides has been investigated through both experimental and computational studies. Spinel iron oxide (γ-Fe2O3) exhibited a much higher NO reduction activity than that of iron oxide with other structures (α-Fe2O3 and LaFeO3). Operando IR measurements clarified that the spinel structure facilitated the reaction between NOx and adsorbed oxidized hydrocarbon or cyanide species. The high reactivity of the spinel structure was ascribed to the high adsorption energy of NO, as elucidated by DFT calculations. Furthermore, molecular orbital calculations demonstrated that the local coordination structure of the spinel iron oxide induced the involvement of not only σ but also π orbitals during NO adsorption on Fe atoms. This work clarified the origin of the structure-dependent activity of metal oxides, with a focus on their local coordination structures.  相似文献   

12.
Nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides with novel adsorbents for aqueous Congo red removal were synthesized by a polyacrylamide gel method and studied for their phase structure, microstructure, adsorption performance, and multiferroic behavior. The phase structure and purity analysis revealed that the nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides presented a spinel-type cubic structure, and the formation of a secondary phase such as Cr2O3, MgO, ZnO, or Co3O4 was not observed. The microstructure characterization confirmed that the spinel-type MCr2O4 oxides grew from fine spherical particles to large rhomboid particles. Adsorption experiments of spinel-type MCr2O4 oxides for adsorption of Congo red dye were fitted well with the pseudo-second-order kinetics. The adsorption capacity of the ZnCr2O4 oxide (44.038 mg/g, pH 7, temperature 28 °C, initial dye concentration 30 mg/L) was found to be higher than that of MgCr2O4 oxide (43.592 mg/g, pH 7, temperature 28 °C) and CoCr2O4 oxide (28.718 mg/g, pH 7, temperature 28 °C). The effects of initial adsorbent concentration, initial dye concentration, pH, and temperature between the ZnCr2O4 oxide and Congo red dye at which optimal removal occurs, were performed. The thermodynamic studies confirmed that a high temperature favors the adsorption of Congo red dye onto ZnCr2O4 oxide studied. The nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides that exhibited high adsorption performance for adsorption of Congo red dye can be ascribed to the synergistic effect of electrostatic interaction, pore filling, and ion exchange. The present work suggested that the nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides have excellent adsorption performance and multiferroic behavior, which shows potential applications for removal of the Congo red dye from wastewater, magnetic memory recording media, magnetic sensor, energy collection and conversion device, and read/write memory.  相似文献   

13.
《中国化学快报》2020,31(9):2295-2299
In this work, we report Co3O4@PPy hybrid structured electrode materials for overall water splitting. The as-synthesized Co3O4/PPy-120 samples present excellent electrocatalytic performances for OER and HER and long durability. It only requires an operating potential of 1.67 V to deliver a current density of 10 mA/cm2 with a remarkable durability for 28 h. The superior electrocatalytic performances mainly can be attributed to the unique heterostructures and the synergistic effects between PPy and Co3O4 electrode materials.  相似文献   

14.
A novel magnetic binary‐metal‐oxide‐coated nanocataly composing of a hollow Fe3O4 core and CeO2‐La2O3 shells with Au nanoparticles encapsulated has been created in this work. The structural features of catalysts were characterized by several techniques, including SEM, TEM, UV‐vis, FTIR, XRD, XPS and TGA analyses. After the coating of CeO2‐La2O3 layer, CeO2‐La2O3/Au/C/Fe3O4 microspheres showed a superior thermal stability and catalytic reactivity compared with a pure CeO2 or La2O3 layer. Accompanied by the burning of carbon layer, the specific surface could be increased by the formation of double‐shelled structure. Besides, the desired samples could be separated by magnet, implying the superior recycle performance. Using the reduction of 4‐nitrophenol by NaBH4 as a model reaction, the microspheres exhibited highly reusability, superior catalytic activity, thermal stability, which are attributed to the unique double‐shelled structure of the support, uniform distribution of Au nanoparticles, the highly thermal stability of CeO2‐La2O3 layer and mixed oxide synergistic effect. As a consequence, the unique nanocatalyst will open a promising way in the fabrication of the double‐shelled hollow binary‐metal‐oxide materials for future research and has great potential in other applications.  相似文献   

15.
This account provides an overview of current research activities that focus on the synthesis and applications of nanomaterials from noble metal (e.g., Au, Ag, Pd) and iron oxide (Fe3O4) hybrids. An introduction to the synthetic strategies that have been developed for generating M–Fe3O4 nanomaterials with different novel structures is presented. Surface functionalization and bioconjugation of these hybrid nanoparticles and nanocomposites are also reviewed. The utilization of the advantageous properties of both noble metals and iron oxide for a variety of applications, such as theranostics, gene delivery, biosensing, cell sorting, bioseparation, and catalysis, is discussed and highlighted. Finally, future trends and perspectives of these sophisticated nanocomposites are outlined. The fundamental requirements underpinning the effective preparation of M–FexOy hybrid nanomaterials shed light on the future development of heterogeneous catalysts, nanotheranostics, nanomedicines, and other chemical technologies.  相似文献   

16.
Double perovskite structure (A2BB′O6) oxides exhibit a breadth of multifunctional properties with a huge potential range of applications in fields as diverse as spintronics, magneto-optic devices, or catalysis, and most of these applications require the use of thin films and heterostructures. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films combining high performance with high throughput and low cost. In addition, the physical properties of these materials are strongly dependent on the ordered arrangement of cations in the double perovskite structure. Thus, promoting spontaneous cationic ordering has become a relevant issue. In this work, our recent achievements by using polymer-assisted deposition (PAD) of environmentally friendly, water-based solutions for the growth of epitaxial ferromagnetic insulating double perovskite La2CoMnO6 and La2NiMnO6 thin films on SrTiO3 and LaAlO3 single-crystal substrates are presented. It is shown that the particular crystallization and growth process conditions of PAD (very slow rate, close to thermodynamic equilibrium conditions) promote high crystallinity and quality of the films, as well as favors spontaneous B-site cationic ordering.  相似文献   

17.
Functional oxides whose physicochemical properties may be reversibly changed at standard conditions are potential candidates for the use in next-generation nanoelectronic devices. To date, vanadium dioxide (VO2) is the only known simple transition-metal oxide that demonstrates a near-room-temperature metal–insulator transition that may be used in such appliances. In this work, we synthesized and investigated the crystals of a novel mixed-valent iron oxide with an unconventional Fe5O6 stoichiometry. Near 275 K, Fe5O6 undergoes a Verwey-type charge-ordering transition that is concurrent with a dimerization in the iron chains and a following formation of new Fe−Fe chemical bonds. This unique feature highlights Fe5O6 as a promising candidate for the use in innovative applications. We established that the minimal Fe−Fe distance in the octahedral chains is a key parameter that determines the type and temperature of charge ordering. This model provides new insights into charge-ordering phenomena in transition-metal oxides in general.  相似文献   

18.
Graphene is a 2D sp2‐hybridized carbon sheet and an ideal material for the adsorption‐based separation of organic pollutants. However, such potential applications of graphene are largely limited, owing to their poor solubility and extensive aggregation properties through graphene? graphene interactions. Herein, we report the synthesis of graphene‐based composites with γ‐Fe2O3 nanoparticle for the high‐performance removal of endocrine‐disrupting compounds (EDC) from water. The γ‐Fe2O3 nanoparticles partially inhibit these graphene? graphene interactions and offer water dispersibility of the composite without compromising much of the high surface area of graphene. In their dispersed form, the graphene component offers the efficient adsorption of EDC, whilst the magnetic iron‐oxide component offers easier magnetic separation of adsorbed EDC.  相似文献   

19.
Scientific interest in atomically controlled layer-by-layer fabrication of transition metal oxide thin films and heterostructures has increased intensely in recent decades for basic physics reasons as well as for technological applications. This trend has to do, in part, with the coming post-Moore era, and functional oxide electronics could be regarded as a viable alternative for the current semiconductor electronics. Furthermore, the interface of transition metal oxides is exposing many new emergent phenomena and is increasingly becoming a playground for testing new ideas in condensed matter physics. To achieve high quality epitaxial thin films and heterostructures of transition metal oxides with atomically controlled interfaces, one critical requirement is the use of atomically flat single terminated oxide substrates since the atomic arrangements and the reaction chemistry of the topmost surface layer of substrates determine the growth and consequent properties of the overlying films. Achieving the atomically flat and chemically single terminated surface state of commercially available substrates, however, requires judicious efforts because the surface of as-received substrates is of chemically mixed nature and also often polar. In this review, we summarize the surface treatment procedures to accomplish atomically flat surfaces with single terminating layer for various metal oxide substrates. We particularly focus on the substrates with lattice constant ranging from 4.00 Å to 3.70 Å, as the lattice constant of most perovskite materials falls into this range. For materials outside the range, one can utilize the substrates to induce compressive or tensile strain on the films and explore new states not available in bulk. The substrates covered in this review, which have been chosen with commercial availability and, most importantly, experimental practicality as a criterion, are KTaO3, REScO3 (RE = Rare-earth elements), SrTiO3, La0.18Sr0.82Al0.59Ta0.41O3 (LSAT), NdGaO3, LaAlO3, SrLaAlO4, and YAlO3. Analyzing all the established procedures, we conclude that atomically flat surfaces with selective A- or B-site single termination would be obtained for most commercially available oxide substrates. We further note that this topmost surface layer selectivity would provide an additional degree of freedom in searching for unforeseen emergent phenomena and functional applications in epitaxial oxide thin films and heterostructures with atomically controlled interfaces.  相似文献   

20.
A simple, yet novel process was developed where magnetic graphene-CdS (Fe3O4-CdS/G) nanocomposites were prepared by a one-pot solvothermal route in which the reduction of graphite oxide (GO) into graphene was accompanied by the generation of CdS and Fe3O4 nanoparticles. The results of TEM and XRD studies indicate the formation of Fe3O4-CdS/G nanocomposites. Besides vibration sample magnetometry, fluorescence spectra and loading of doxorubicin (DOX) reveal that this new nanocomposite possesses good superparamagnet (44.85 emu/g), good fluorescent properties and a high loading efficiency (0.98 mg/mg). The efficient, stable, and water soluble nanocomposites are confirmed to be suitable for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号