首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simultaneous determination of chromium and cobalt in water samples has been studied. Chemiluminescence registers based on the luminol-hydrogen peroxide reaction have obtained by a batch procedure. PLS algorithms have employed to model the time-response (formation and destruction of emitter).The influence of the presence of two metals and the non-linearity relationship between response and concentration have been evaluated in the signal. Different experimental designs and the selection of variables have been tested. The calibration set has been selected based on two criteria: unicomponent and/or bicomponent standard solutions and the slope calculated from linear univariate calibration. The response has been modelled providing high percentages of explained variance, robust models and low prediction errors.The proposed methodology has been validated using test standard solutions and a standard reference material of fresh water. Accurate results have proved the advantages of this method for the simultaneous determination of chromium and cobalt in water samples.  相似文献   

2.
Smith MR  Jee RD  Moffat AC  Rees DR  Broad NW 《The Analyst》2004,129(9):806-816
A procedure was developed for different modes of calibration transfer in near-infrared (NIR) spectroscopy, which included a method for the selection of a subset of samples appropriate for transfer. As a worked example, these guidelines were applied to the transfer of a multivariate calibration model, representing a validated NIR single tablet assay for the active within an intact pharmaceutical product, between three equivalent dispersive NIR transmission instruments. Transfer was first evaluated between two instruments, representing the situation where both were available during calibration development. A spectral correction method alone, applied to the transfer instrument, was not sufficient to facilitate transfer, with further optimisation of the calibration model using a novel wavelength selection algorithm necessary to remove regions of the spectral range that resulted in skewed predictions on the second instrument. Through this approach, a single calibration model was found to be equally accurate and precise on the two instruments. A procedure, using the Kennard-Stone algorithm, is described for determining a reduced number of samples as a transfer set using only the spectral information from the original instrument. The purpose of the subset was to permit transfer to a new instrument where that instrument was not available until after calibration development or where it was undesirable to re-measure the full sample set (i.e. due to excessive reference chemistry). Utilising the transfer set, transfer to a third instrument was evaluated. The calibration model, optimised between the first two instruments, was not directly applicable for the third instrument, with further wavelength selection required to remove a small region of spectral data. On completion, using a full statistical evaluation, a single calibration model was found to be equally accurate and precise on all three instruments.  相似文献   

3.
Haploid breeding is one of the most important modern crop selection technologies. Near-infrared spectroscopy (NIRS) has been used to identify haploids rapidly and to non-destructively accelerate the selection process. However, the change of the external environment weakens the performance of the model, as the training and the test spectra may be collected separately from different environments. Thus, a novel calibration transfer method is proposed to calibrate the model in order to reduce the impact of the environment. The near-infrared spectra of 400 maize kernels of two varieties were collected from 9000 to 4000?cm?1. Principal component analysis was performed to construct a feature space and extract features. In the constructed feature space, the calibration transfer method was used to calibrate test sets. Finally, support vector machine was employed to establish a haploid identification model. The results show that when the spectra of the test set and the training set were collected in the same environment, the corrected acceptance of the model was above 90%. While the spectra of the test set and the training set were collected from different environments, the corrected acceptance was 77.87%. However, when the model used the calibration transfer method, the corrected acceptance increased by 12.46%. Moreover, compared with direct standardization, this calibration transfer method achieved better results without detailed sample chemical information and many standards. The results demonstrate that the calibration transfer method based on NIRS was effective for identifying maize haploid kernels in variable environments.  相似文献   

4.
A calibration transfer method for near-infrared (NIR) spectra based on spectral regression is proposed. Spectral regression method can reveal low dimensional manifold structure in high dimensional spectroscopic data and is suitable to transfer the NIR spectra of different instruments. A comparative study of the proposed method and piecewise direct standardization (PDS) for standardization on two benchmark NIR data sets is presented. Experimental results show that spectral regression method outperforms PDS and is quite competitive with PDS with background correction. When the standardization subset has sufficient samples, spectral regression method exhibits excellent performance.  相似文献   

5.
A facile mass spectrometric kinetic method for quantitative analysis of chiral compounds was developed by integrating mass spectrometry based on chemical derivatization and the spectral shape deformation quantitative theory. Chemical derivatization was employed to introduce diastereomeric environments to the chiral compounds of interest, resulting in different abundance distribution patterns of fragment ions of the derivatization products of enantiomers in mass spectrometry. The quantitative information of the chiral compounds of interest was extracted from complex mass spectral data by an advanced calibration model derived based on the spectral shape deformation quantitative theory. The performance of the proposed method was tested on the quantitative analysis of R‐propranolol in propranolol tablets. Experimental results demonstrated that it could achieve accurate and precise concentration ratio predictions for R‐propranolol with an average relative predictive error (ARPE) of about 4%, considerably better than the corresponding results of the mass spectrometric method based on chemical derivatization and the univariate ratiometric model (ARPE: about 12%). The limit of detection (LOD) and limit of quantification (LOQ) of the proposed method for the concentration ratio of R‐propranolol were estimated to be 1.5% and 6.0%, respectively. The proposed method is complementary to the existing methods designed for the quantification of enantiomers such as the Cooks kinetic method.  相似文献   

6.
The simultaneous determination of organic dye mixtures by using spectrophotometric methods is a difficult problem in analytical chemistry, due to spectral interferences. By using multivariate calibration methods such as partial least-squares regression (PLSR), it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration stage. In this study, the calibration model is based on absorption spectra in the 350-650-nm range for a set of 16 different mixtures of reactive red 195, reactive yellow 145 and reactive orange 122 dyes, and made the determination of the dye concentrations possible in a validation set with significantly greater accuracy than the conventional univariate calibration method. By using the developed model it was possible to monitor the decolorization kinetic of one dye (reactive orange 122), when the mixture of the three dyes was previously submitted to an ozonation process.  相似文献   

7.
Glycerol monolaurate (GML) products contain many impurities, such as lauric acid and glucerol. The GML content is an important quality indicator for GML production. A hybrid variable selection algorithm, which is a combination of wavelet transform (WT) technology and modified uninformative variable eliminate (MUVE) method, was proposed to extract useful information from Fourier transform infrared (FT-IR) transmission spectroscopy for the determination of GML content. FT-IR spectra data were compressed by WT first; the irrelevant variables in the compressed wavelet coefficients were eliminated by MUVE. In the MUVE process, simulated annealing (SA) algorithm was employed to search the optimal cutoff threshold. After the WT-MUVE process, variables for the calibration model were reduced from 7366 to 163. Finally, the retained variables were employed as inputs of partial least squares (PLS) model to build the calibration model. For the prediction set, the correlation coefficient (r) of 0.9910 and root mean square error of prediction (RMSEP) of 4.8617 were obtained. The prediction result was better than the PLS model with full-spectra data. It was indicated that proposed WT-MUVE method could not only make the prediction more accurate, but also make the calibration model more parsimonious. Furthermore, the reconstructed spectra represented the projection of the selected wavelet coefficients into the original domain, affording the chemical interpretation of the predicted results. It is concluded that the FT-IR transmission spectroscopy technique with the proposed method is promising for the fast detection of GML content.  相似文献   

8.
In this paper, multivariate calibration of complicated process fluorescence data is presented. Two data sets related to the production of white sugar are investigated. The first data set comprises 106 observations and 571 spectral variables, and the second data set 268 observations and 3997 spectral variables. In both applications, a single response, ash content, is modelled and predicted as a function of the spectral variables. Both data sets contain certain features making multivariate calibration efforts non-trivial. The objective is to show how principal component analysis (PCA) and partial least squares (PLS) regression can be used to overview the data sets and to establish predictively sound regression models. It is shown how a recently developed technique for signal filtering, orthogonal signal correction (OSC), can be applied in multivariate calibration to enhance predictive power. In addition, signal compression is tested on the larger data set using wavelet analysis. It is demonstrated that a compression down to 4% of the original matrix size — in the variable direction — is possible without loss of predictive power. It is concluded that the combination of OSC for pre-processing and wavelet analysis for compression of spectral data is promising for future use.  相似文献   

9.
用局部拟合主成分回归计算光度分析法测定黄连生物碱   总被引:1,自引:0,他引:1  
陈闽军  程翼宇  刘雪松 《化学学报》2003,61(10):1623-1627
针对具有样本数据非无匀分布和非线性特点的光度分析问题,提聘种局部拟合 主成分回归法,用于中药多组分计算测定。该方法根据待测样本与各已知样本光度 分析数据的欧式距离确定相应的权值,将部分权值较大的样本组成校正集,并用分 段线性拟合算法建立待测样本的校正预测模型,将其用于分析黄连的药根碱、巴巴 亭和小檗碱等三种生物碱,所得预测均方根误差分别为0.023,0.0400和0.052,优 于主成分回归法、偏最小二乘法以及人工神经元网络法所得结果。这表明,本方法 用于中药光度分析能获得较为准确的计算分析结果。  相似文献   

10.
In multivariate spectral calibration by principal component regression (PCR), the principal components (PCs) are calculated from the response data measured at all employed instrument channels; however some channels are redundant and their responses do not possess useful information. Thus, the extracted PCs possess mixed information from both useful and redundant channels. In this work, we propose a segmentation approach based on unsupervised pattern recognition to identify the most informative spectral region and then to construct a stable multivariate calibration model by PCR. In this method, the instrument channels are clustered into different segments via Kohonen self‐organization map. The spectral data of each segment are then subjected to PCA and the derived PCs are used as input variables for an inverse least square (ILS) regression model employing stepwise selection of the informative PCs. The proposed method was evaluated by the analysis of four simulated and six experimental data sets. It was found that our proposed method can model the above data sets with prediction errors lower than conventional partial least squares (PLS) and PCR methods. In addition, the prediction ability of our method was better than the previously reported models for these data sets. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Net analyte signal (NAS)-based multivariate calibration methods were employed for simultaneous determination of anthazoline and naphazoline. The NAS vectors calculated from the absorbance data of the drugs mixture were used as input for classical least squares (CLS), principal component and partial least squares regression PCR and PLS methods. A wavelength selection strategy was used to find the best wavelength region for each drug separately. As a new procedure, we proposed an experimental design-neural network strategy for wavelength region optimization. By use of a full factorial design method, some different wavelength regions were selected by taking into account different spectral parameters including the starting wavelength, the ending wavelength and the wavelength interval. The performance of all the multivariate calibration methods, in all selected wavelength regions for both drugs, was evaluated by calculating a fitness function based on the root mean square error of calibration and validation. A three-layered feed-forward artificial neural network (ANN) model with back-propagation learning algorithm was employed to model the nonlinear relationship between the spectral parameters and fitness of each regression method. From the resulted ANN models, the spectral regions in which lowest fitness could be obtained were chosen. Comparison of the results revealed that the net NAS-PLS resulted in lower prediction error than the other models. The proposed NAS-based calibration method was successfully applied to the simultaneous analyses of anthazoline and naphazoline in a commercial eye drop sample.  相似文献   

12.
With the aim of developing a nonlinear tool for near-infrared spectral (NIRS) calibration, an applicable algorithm, called MIKPLS, is designed based on the combination of two different strategies, i.e. mutual information (MI) for interval selection and kernel partial least squares (KPLS) for modeling. Due to the ability of capturing linear and nonlinear dependencies between variables simultaneously, mutual information between each candidate variables and target is calculated and employed to induce a continuous wavelength interval, which is subsequently applied to build a parsimonious calibration model for future use by kernel partial least squares. Through the experiments on two datasets, it seems that mutual information (MI)-induced interval selection, followed by KPLS, forms a very simple and practical tool, allowing a prediction model to be constructed using a much-reduced set of neighboring variables, but without any loss of generalizations and with improved prediction performance instead.  相似文献   

13.
Optimized sample-weighted partial least squares   总被引:2,自引:0,他引:2  
Lu Xu 《Talanta》2007,71(2):561-566
In ordinary multivariate calibration methods, when the calibration set is determined to build the model describing the relationship between the dependent variables and the predictor variables, each sample in the calibration set makes the same contribution to the model, where the difference of representativeness between the samples is ignored. In this paper, by introducing the concept of weighted sampling into partial least squares (PLS), a new multivariate regression method, optimized sample-weighted PLS (OSWPLS) is proposed. OSWPLS differs from PLS in that it builds a new calibration set, where each sample in the original calibration set is weighted differently to account for its representativeness to improve the prediction ability of the algorithm. A recently suggested global optimization algorithm, particle swarm optimization (PSO) algorithm is used to search for the best sample weights to optimize the calibration of the original training set and the prediction of an independent validation set. The proposed method is applied to two real data sets and compared with the results of PLS, the most significant improvement is obtained for the meat data, where the root mean squared error of prediction (RMSEP) is reduced from 3.03 to 2.35. For the fuel data, OSWPLS can also perform slightly better or no worse than PLS for the prediction of the four analytes. The stability and efficiency of OSWPLS is also studied, the results demonstrate that the proposed method can obtain desirable results within moderate PSO cycles.  相似文献   

14.
一种消除在线多通道近红外分析仪各通道光谱差异的方法   总被引:1,自引:0,他引:1  
针对在线多通道近红外分析仪因光纤耦合器件加工精度和装配过程存在细微差异而引起通道间光谱不一致的问题,在对光谱差异进行解析的基础上,提出了一种运算简捷、且在实际应用中易于实现的平均光谱差值校正(MSSC)方法,并与常用的模型传递算法如斜率/偏差(S/B)算法、分段直接校正(PDS)算法,以及通过偏最小二乘-人工神经网络(PLS-ANN)建立多通道混合校正模型进行了对比。结果表明,该方法可有效消除各通道所测光谱之间存在的差异,实现了多通道分析模型的通用性。  相似文献   

15.
This study proposes an analytical method for the simultaneous near infrared (NIR) spectrometric determination of palmitic, oleic, linoleic and linolenic acids in sea buckthorn seed oil. For this purpose, four different combinations of multivariate calibration methods and variable selections were evaluated: partial least squares (PLS) with full spectrum; PLS with uninformative variables elimination (UVE); PLS with competitive adaptive reweighted sampling (CARS); and multiple linear regression (MLR) with uninformative variable elimination combined with successive projections algorithm (UVE-SPA). An independent set of samples was employed to evaluate the performance of the resulting models. The UVE-SPA-MLR model developed with a few spectral variables provided the best results for each parameter. The values of relative errors of prediction (REP) from the UVE-SPA-MLR model for palmitic, oleic, linoleic and linolenic acids are 1.77%, 1.20%, 1.02% and 1.40%, respectively. These results indicate that this method is a feasible and fast method for the determination of the fatty acid content of sea buckthorn seed oil.  相似文献   

16.
This work proposes a modification to the successive projections algorithm (SPA) aimed at selecting spectral variables for multiple linear regression (MLR) in the presence of unknown interferents not included in the calibration data set. The modified algorithm favours the selection of variables in which the effect of the interferent is less pronounced. The proposed procedure can be regarded as an adaptive modelling technique, because the spectral features of the samples to be analyzed are considered in the variable selection process. The advantages of this new approach are demonstrated in two analytical problems, namely (1) ultraviolet–visible spectrometric determination of tartrazine, allure red and sunset yellow in aqueous solutions under the interference of erythrosine, and (2) near-infrared spectrometric determination of ethanol in gasoline under the interference of toluene. In these case studies, the performance of conventional MLR-SPA models is substantially degraded by the presence of the interferent. This problem is circumvented by applying the proposed Adaptive MLR-SPA approach, which results in prediction errors smaller than those obtained by three other multivariate calibration techniques, namely stepwise regression, full-spectrum partial-least-squares (PLS) and PLS with variables selected by a genetic algorithm. An inspection of the variable selection results reveals that the Adaptive approach successfully avoids spectral regions in which the interference is more intense.  相似文献   

17.
This paper presents a Bayesian approach to the development of spectroscopic calibration models. By formulating the linear regression in a probabilistic framework, a Bayesian linear regression model is derived, and a specific optimization method, i.e. Bayesian evidence approximation, is utilized to estimate the model “hyper-parameters”. The relation of the proposed approach to the calibration models in the literature is discussed, including ridge regression and Gaussian process model. The Bayesian model may be modified for the calibration of multivariate response variables. Furthermore, a variable selection strategy is implemented within the Bayesian framework, the motivation being that the predictive performance may be improved by selecting a subset of the most informative spectral variables. The Bayesian calibration models are applied to two spectroscopic data sets, and they demonstrate improved prediction results in comparison with the benchmark method of partial least squares.  相似文献   

18.
将小波变换和多维偏最小二乘法相结合用于近红外光谱定量校正模型的建立。首先将原始光谱进行小波变换分解,得到系列小波细节系数,通过选取一组受外界因素少、信息强的小波系数组成三维光谱阵,然后再采用多维偏最小二乘法建立校正模型。实验结果表明,该方法所建近红外校正模捌的预测能力更强,并更具稳健性。  相似文献   

19.
分段直接校正(PDS)算法是目前最常用的近红外光谱模型传递方法,但它在对整个谱区进行校正时,始终依赖大小不变的传递窗口.为了提高传递效果,本研究在PDS基础上提出了一种新的算法--小波多尺度分段直接校正法(WMPDS),用于混胺的近红外光谱模型传递,并详细讨论了模型的传递参数和传递结果.本算法首先对混胺的近红外光谱进行...  相似文献   

20.
The simultaneous determination of lanthanide family elements is one of the greatest problems in analytical chemistry, due to the close similarity of their chemical properties. Spectrophotometric methods are generally of limited use, due to the various mutual spectral interferences involved. By using multivariate calibration methods (partial least-squares regression, PLSR), it was possible to obtain a model that adjusts itself perfectly to the values of the mixture concentrations used in the calibration. The model used absorption spectra in the 290-800 nm range for a set of 20 different mixtures of Ce, Pr, Nd and Sm, and made possible the determination of Ce, Pr and Nd concentrations of a commercial rare-earth product, with significantly greater precision than the conventional univariate calibration method. Determination of the Sm concentrations was not possible, since its concentration was below the concentrations used in the model definition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号