首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
We give some alternative forms of the generating functions for the Bernstein basis functions. Using these forms,we derive a collection of functional equations for the generating functions. By applying these equations, we prove some identities for the Bernstein basis functions. Integrating these identities, we derive a variety of identities and formulas, some old and some new, for combinatorial sums involving binomial coefficients, Pascal's rule, Vandermonde's type of convolution, the Bernoulli polynomials, and the Catalan numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of this paper is to introduce and investigate some of the primary generalizations and unifications of the Peters polynomials and numbers by means of convenient generating functions and p‐adic integrals method. Various fundamental properties of these polynomials and numbers involving some explicit series and integral representations in terms of the generalized Stirling numbers, generalized harmonic sums, and some well‐known special numbers and polynomials are presented. By using p‐adic integrals, we construct generating functions for Peters type polynomials and numbers (Apostol‐type Peters numbers and polynomials). By using these functions with their partial derivative eqautions and functional equations, we derive many properties, relations, explicit formulas, and identities including the Apostol‐Bernoulli polynomials, the Apostol‐Euler polynomials, the Boole polynomials, the Bernoulli polynomials, and numbers of the second kind, generalized harmonic sums. A brief revealing and historical information for the Peters type polynomials are given. Some of the formulas given in this article are given critiques and comments between previously well‐known formulas. Finally, two open problems for interpolation functions for Apostol‐type Peters numbers and polynomials are revealed.  相似文献   

3.
We first establish the result that the Narayana polynomials can be represented as the integrals of the Legendre polynomials. Then we represent the Catalan numbers in terms of the Narayana polynomials by three different identities. We give three different proofs for these identities, namely, two algebraic proofs and one combinatorial proof. Some applications are also given which lead to many known and new identities.  相似文献   

4.
The aim of this paper was to derive new identities and relations associated with the q‐Bernstein polynomials, q‐Frobenius–Euler polynomials, l‐functions, and q‐Stirling numbers of the second kind. We also give some applications related to theses polynomials and numbers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
高阶Bernoulli多项式和高阶Euler多项式的关系   总被引:7,自引:0,他引:7  
雒秋明  马韵新  祁锋 《数学杂志》2005,25(6):631-636
利用发生函数的方法,讨论了高阶Bernoulli数和高阶Euler数,高阶Bernoulli多项式和高阶Euler多项式之间的关系,得到了经典Bernoulli数和Euler数,经典Bernoulli多项式和Euler多项式之间的新型关系。  相似文献   

6.
We prove a general symmetric identity involving the degenerate Bernoulli polynomials and sums of generalized falling factorials, which unifies several known identities for Bernoulli and degenerate Bernoulli numbers and polynomials. We use this identity to describe some combinatorial relations between these polynomials and generalized factorial sums. As further applications we derive several identities, recurrences, and congruences involving the Bernoulli numbers, degenerate Bernoulli numbers, generalized factorial sums, Stirling numbers of the first kind, Bernoulli numbers of higher order, and Bernoulli numbers of the second kind.  相似文献   

7.
Recently, the authors introduced some generalizations of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials (see [Q.-M. Luo, H.M. Srivastava, J. Math. Anal. Appl. 308 (2005) 290-302] and [Q.-M. Luo, Taiwanese J. Math. 10 (2006) 917-925]). The main object of this paper is to investigate an analogous generalization of the Genocchi polynomials of higher order, that is, the so-called Apostol-Genocchi polynomials of higher order. For these generalized Apostol-Genocchi polynomials, we establish several elementary properties, provide some explicit relationships with the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, and derive various explicit series representations in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) zeta function. We also deduce their special cases and applications which are shown here to lead to the corresponding results for the Genocchi and Euler polynomials of higher order. By introducing an analogue of the Stirling numbers of the second kind, that is, the so-called λ-Stirling numbers of the second kind, we derive some basic properties and formulas and consider some interesting applications to the family of the Apostol type polynomials. Furthermore, we also correct an error in a previous paper [Q.-M. Luo, H.M. Srivastava, Comput. Math. Appl. 51 (2006) 631-642] and pose two open problems on the subject of our investigation.  相似文献   

8.
We define the generalized potential polynomials associated to an independent variable, and prove an explicit formula involving the generalized potential polynomials and the exponential Bell polynomials. We use this formula to describe closed type formulas for the higher order Bernoulli, Eulerian, Euler, Genocchi, Apostol-Bernoulli, Apostol-Euler polynomials and the polynomials involving the Stirling numbers of the second kind. As further applications, we derive several known identities involving the Bernoulli numbers and polynomials and Euler polynomials, and new relations for the higher order tangent numbers, the higher order Bernoulli numbers of the second kind, the numbers , the higher order Bernoulli numbers and polynomials and the higher order Euler polynomials and their coefficients.  相似文献   

9.
In this paper, using the properties of the moments of p-adic measures, we establish some identities and Kummer likewise congruences concerning Euler numbers and polynomials. In the preliminaries, we introduce the Laplace transform which is an important tool for the determination of the moments of p-adic measures. We also give a sequence n(dn) linked to Euler numbers and which satisfies the same type of congruences and identities as the Euler numbers. At the end, for p=2, we give congruences on Euler numbers involving the sequence n(dn).  相似文献   

10.
By using partial differential equations (PDEs) of the generating functions for the unification of the Bernoulli, Euler and Genocchi polynomials and numbers, we derive many new identities and recurrence relations for these polynomials and numbers. In [33], Srivastava et al. defined a unified presentation of certain meromorphic functions related to the families of the partial zeta type functions. By using these functions, we construct p-adic functions which are related to the partial zeta type functions. By applying these p-adic function, we construct unified presentation of p-adic L-functions. These functions give us generalization of the Kubota–Leopoldt p-adic L-functions, which are related to the Bernoulli numbers and the other p-adic L-functions, which are related to the Euler numbers and polynomials. We also give some remarks and comments on these functions.  相似文献   

11.
We give several effective and explicit results concerning the values of some polynomials in binary recurrence sequences. First we provide an effective finiteness theorem for certain combinatorial numbers (binomial coefficients, products of consecutive integers, power sums, alternating power sums) in binary recurrence sequences, under some assumptions. We also give an efficient algorithm (based on genus 1 curves) for determining the values of certain degree 4 polynomials in such sequences. Finally, partly by the help of this algorithm we completely determine all combinatorial numbers of the above type for the small values of the parameter involved in the Fibonacci, Lucas, Pell and associated Pell sequences.   相似文献   

12.
The aim of this paper is to study on the Genocchi polynomials of higher order on P, the algebra of polynomials in the single variable x over the field C of characteristic zero and P, the vector spaces of all linear functional on P. By using the action of a linear functional L on a polynomial p(x) Sheffer sequences and Appell sequences, we obtain some fundamental properties of the Genocchi polynomials. Furthermore, we give relations between, the first and second kind Stirling numbers, Euler polynomials of higher order and Genocchi polynomials of higher order.  相似文献   

13.
By using p-adic q-deformed fermionic integral on ℤ p , we construct new generating functions of the twisted (h, q)-Euler numbers and polynomials attached to a Dirichlet character χ. By applying Mellin transformation and derivative operator to these functions, we define twisted (h, q)-extension of zeta functions and l-functions, which interpolate the twisted (h, q)-extension of Euler numbers at negative integers. Moreover, we construct the partially twisted (h, q)-zeta function. We give some relations between the partially twisted (h, q)-zeta function and twisted (h, q)-extension of Euler numbers.   相似文献   

14.
The purpose of this paper is to define a new class polynomials. Special cases of these polynomials give many famous family of the Bernstein type polynomials and beta polynomials. We also construct generating functions for these polynomials. We investigate some fundamental properties of these functions and polynomials. Using functional equations and generating functions, we derive various identities related to theses polynomials. We also construct interpolation function that interpolates these polynomials at negative integers. Finally, we give a matrix representations of these polynomials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Recently, Srivastava and Pintér proved addition theorems for the generalized Bernoulli and Euler polynomials. Luo and Srivastava obtained the anologous results for the generalized Apostol–Bernoulli polynomials and the generalized Apostol–Euler polynomials. Finally, Tremblay et al. gave analogues of the Srivastava–Pintér addition theorem for general family of Bernoulli polynomials. In this paper, we obtain Srivastava–Pintér type theorems for 2D‐Appell Polynomials. We also give the representation of 2D‐Appell Polynomials in terms of the Stirling numbers of the second kind and 1D‐Appell polynomials. Furthermore, we introduce the unified 2D‐Apostol polynomials. In particular, we obtain some relations between that family of polynomials and the generalized Hurwitz–Lerch zeta function as well as the Gauss hypergeometric function. Finally, we present some applications of Srivastava–Pintér type theorems for 2D‐Appell Polynomials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
It is well-known that the Euler polynomials E2n(x) with n 0 can be expressed as a polynomial Hn(x(x – 1)) of x(x – 1). We extend Hn(u) to formal power series for n < 0 and prove several properties of the coefficients appearing in these polynomials or series, which generalize some recent results, independently obtained by Hammersley [7] and Horadam [8], and answer a question of Kreweras [9]. We also deduce several continued fraction expansions for the generating function of Euler polynomials, some of these formulae had been published by Stieltjes [14] and by Rogers [12] without proof. These formulae generalize our earlier results concerning Genocchi numbers, Euler numbers and Springer numbers [5, 4].  相似文献   

17.
We introduce a new basis for quasisymmetric functions, which arise from a specialization of nonsymmetric Macdonald polynomials to standard bases, also known as Demazure atoms. Our new basis is called the basis of quasisymmetric Schur functions, since the basis elements refine Schur functions in a natural way. We derive expansions for quasisymmetric Schur functions in terms of monomial and fundamental quasisymmetric functions, which give rise to quasisymmetric refinements of Kostka numbers and standard (reverse) tableaux. From here we derive a Pieri rule for quasisymmetric Schur functions that naturally refines the Pieri rule for Schur functions. After surveying combinatorial formulas for Macdonald polynomials, including an expansion of Macdonald polynomials into fundamental quasisymmetric functions, we show how some of our results can be extended to include the t parameter from Hall-Littlewood theory.  相似文献   

18.
利用初等方法研究Chebyshev多项式的性质,建立了广义第二类Chebyshev多项式的一个显明公式,并得到了一些包含第一类Chebyshev多项式,第一类Stirling数和Lucas数的恒等式.  相似文献   

19.
Recently, Srivastava et al. introduced a new generalization of the Bernoulli, Euler and Genocchi polynomials (see [H.M. Srivastava, M. Garg, S. Choudhary, Russian J. Math. Phys. 17 (2010) 251-261] and [H.M. Srivastava, M. Garg, S. Choudhary, Taiwanese J. Math. 15 (2011) 283-305]). They established several interesting properties of these general polynomials, the generalized Hurwitz-Lerch zeta functions and also in series involving the familiar Gaussian hypergeometric function. By the same motivation of Srivastava’s et al. [11] and [12], we introduce and derive multiplication formula and some identities related to the generalized Bernoulli type polynomials of higher order associated with positive real parameters a, b and c. We also establish multiple alternating sums in terms of these polynomials. Moreover, by differentiating the generating function of these polynomials, we give a interpolation function of these polynomials.  相似文献   

20.
In this paper, we consider a kind of sums involving Cauchy numbers, which have not been studied in the literature. By means of the method of coefficients, we give some properties of the sums. We further derive some recurrence relations and establish a series of identities involving the sums, Stirling numbers, generalized Bernoulli numbers, generalized Euler numbers, Lah numbers, and harmonic numbers. In particular, we generalize some relations between two kinds of Cauchy numbers and some identities for Cauchy numbers and Stirling numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号