首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main object of this paper is to give analogous definitions of Apostol type (see [T.M. Apostol, On the Lerch Zeta function, Pacific J. Math. 1 (1951) 161-167] and [H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77-84]) for the so-called Apostol-Bernoulli numbers and polynomials of higher order. We establish their elementary properties, derive several explicit representations for them in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) Zeta function, and deduce their special cases and applications which are shown here to lead to the corresponding results for the classical Bernoulli numbers and polynomials of higher order.  相似文献   

2.
Recently, the authors introduced some generalizations of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials (see [Q.-M. Luo, H.M. Srivastava, J. Math. Anal. Appl. 308 (2005) 290-302] and [Q.-M. Luo, Taiwanese J. Math. 10 (2006) 917-925]). The main object of this paper is to investigate an analogous generalization of the Genocchi polynomials of higher order, that is, the so-called Apostol-Genocchi polynomials of higher order. For these generalized Apostol-Genocchi polynomials, we establish several elementary properties, provide some explicit relationships with the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, and derive various explicit series representations in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) zeta function. We also deduce their special cases and applications which are shown here to lead to the corresponding results for the Genocchi and Euler polynomials of higher order. By introducing an analogue of the Stirling numbers of the second kind, that is, the so-called λ-Stirling numbers of the second kind, we derive some basic properties and formulas and consider some interesting applications to the family of the Apostol type polynomials. Furthermore, we also correct an error in a previous paper [Q.-M. Luo, H.M. Srivastava, Comput. Math. Appl. 51 (2006) 631-642] and pose two open problems on the subject of our investigation.  相似文献   

3.
Recently, Srivastava and Pintér proved addition theorems for the generalized Bernoulli and Euler polynomials. Luo and Srivastava obtained the anologous results for the generalized Apostol–Bernoulli polynomials and the generalized Apostol–Euler polynomials. Finally, Tremblay et al. gave analogues of the Srivastava–Pintér addition theorem for general family of Bernoulli polynomials. In this paper, we obtain Srivastava–Pintér type theorems for 2D‐Appell Polynomials. We also give the representation of 2D‐Appell Polynomials in terms of the Stirling numbers of the second kind and 1D‐Appell polynomials. Furthermore, we introduce the unified 2D‐Apostol polynomials. In particular, we obtain some relations between that family of polynomials and the generalized Hurwitz–Lerch zeta function as well as the Gauss hypergeometric function. Finally, we present some applications of Srivastava–Pintér type theorems for 2D‐Appell Polynomials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Recently Srivastava et al. [J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003) 7-18; J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1-13; Y.C. Kim, H.M. Srivastava, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, Complex Var. Theory Appl. 34 (1997) 293-312] introduced and studied a class of analytic functions associated with the generalized hypergeometric function. In the present paper, by using the Briot-Bouquet differential subordination, new results in this class are obtained.  相似文献   

5.
Almost four decades ago, H.M. Srivastava considered a general family of univariate polynomials, the Srivastava polynomials, and initiated a systematic investigation for this family [10]. In 2001, B. González, J. Matera and H.M. Srivastava extended the Srivastava polynomials by inserting one more parameter [4]. In this study we obtain a family of linear generating functions for these extended polynomials. Some illustrative results including Jacobi, Laguerre and Bessel polynomials are also presented. Furthermore, mixed multilateral and multilinear generating functions are derived for these polynomials.  相似文献   

6.
By employing the univariate series expansion of classical hypergeometric series formulae, Shen [L.-C. Shen, Remarks on some integrals and series involving the Stirling numbers and ζ(n), Trans. Amer. Math. Soc. 347 (1995) 1391-1399] and Choi and Srivastava [J. Choi, H.M. Srivastava, Certain classes of infinite series, Monatsh. Math. 127 (1999) 15-25; J. Choi, H.M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005) 51-70] investigated the evaluation of infinite series related to generalized harmonic numbers. More summation formulae have systematically been derived by Chu [W. Chu, Hypergeometric series and the Riemann Zeta function, Acta Arith. 82 (1997) 103-118], who developed fully this approach to the multivariate case. The present paper will explore the hypergeometric series method further and establish numerous summation formulae expressing infinite series related to generalized harmonic numbers in terms of the Riemann Zeta function ζ(m) with m=5,6,7, including several known ones as examples.  相似文献   

7.
Haruki and Rassias [H. Haruki, T.M. Rassias, New integral representations for Bernoulli and Euler polynomials, J. Math. Anal. Appl. 175 (1993) 81-90] found the integral representations of the classical Bernoulli and Euler polynomials and proved them by making use of the properties of certain functional equation. In this sequel, we rederive, in a completely different way, the results of Haruki and Rassias and deduce related and new integral representations. Our proofs are quite simple and remarkably elementary.  相似文献   

8.
It is shown that there exists a companion formula to Srivastava’s formula for the Lipschitz–Lerch Zeta function [see H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77–84] and that together these two results form a discrete Fourier transform pair. This Fourier transform pair makes it possible for other (known or new) results involving the values of various Zeta functions at rational arguments to be easily recovered or deduced in a more general context and in a remarkably unified manner.  相似文献   

9.
Taking advantage of Nadarajah's representation of modified Chebyshev polynomials by means of the random variable that has the Student's t distribution [S. Nadarajah, On modified Chebyshev polynomials, J. Math. Anal. Appl. 334 (2007) 1492-1494] the scope of this paper is the generation of the identities for the moments of linear rescaling random variables that have the Student's t distribution.  相似文献   

10.
The authors present six general integral formulas (four definite integrals and two contour inegrals) for theH-function of several complex variables, which was introduced and studied in a series of earlier papers by H. M. Srivastava and R. Panda (cf., e.g., [25] through [29]; see also [14] through [18], [20], [24], [32], [34], [35], [37], and [38]). Each of these integral formulas involves a product of the multivariableH-function and a general class of polynomials with essentially arbitrary coefficients which were considered elsewhere by H. M. Srivastava [21]. By assigning suiatble special values to these coefficients, the main results (contained in Theorems 1, 2 and 3 below) can be reduced to integrals involving the classical orthogonal polynomials including, for example, Hermite, Jacobi [and, of course, Gegenbauer (or ultraspherical), Legendre, and Tchebycheff], and Laguerre polynomials, the Bessel polynomials considered by H. L. Krall and O. Frink [9], and such other classes of generalized hypergeometric polynomials as those studied earlier by F. Brafman [3] and by H. W. Gould and A. T. Hopper [8]. On the other hand, the multivariableH-functions occurring in each of our main results can be reduced, under various special cases, to such simpler functions as the generalized Lauricella hypergeometric functions of several complex variables [due to H. M. Srivastava and M. C. Daoust (cf. [22] and [23])] which indeed include a great many of the useful functions (or the products of several such functions) of hypergeometric type (in one and more variables) as their particular cases (see,e. g., [1], [10] and [39]). Many of the aforementioned applications of our integral formulas (contained in Theorems 1, 2 and 3 below) are considered briefly. Further usefulness of some of these consequences of Theorems 1 and 2 in terms of the classical orthogonal polynomials is illustrated by considering a simple problem involving the orthogonal expansion of the multivariableH-function in series of Jacobi polynomials. It is also shown how these general integrals are related to a number of results scattered in the literature. 0261 0262 V  相似文献   

11.
It has been shown in Ferreira et al. [Asymptotic relations in the Askey scheme for hypergeometric orthogonal polynomials, Adv. in Appl. Math. 31(1) (2003) 61–85], López and Temme [Approximations of orthogonal polynomials in terms of Hermite polynomials, Methods Appl. Anal. 6 (1999) 131–146; The Askey scheme for hypergeometric orthogonal polynomials viewed from asymptotic analysis, J. Comput. Appl. Math. 133 (2001) 623–633] that the three lower levels of the Askey table of hypergeometric orthogonal polynomials are connected by means of asymptotic relations. In Ferreira et al. [Limit relations between the Hahn polynomials and the Hermite, Laguerre and Charlier polynomials, submitted for publication] we have established new asymptotic connections between the fourth level and the two lower levels. In this paper, we continue with that program and obtain asymptotic expansions between the fourth level and the third level: we derive 16 asymptotic expansions of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials in terms of Meixner–Pollaczek, Jacobi, Meixner and Krawtchouk polynomials. From these expansions, we also derive three new limits between those polynomials. Some numerical experiments show the accuracy of the approximations and, in particular, the accuracy in the approximation of the zeros of those polynomials.  相似文献   

12.
The main purpose of this paper is to prove an identity of symmetry for the higher order Bernoulli polynomials. It turns out that the recurrence relation and multiplication theorem for the Bernoulli polynomials which discussed in [F.T. Howard, Application of a recurrence for the Bernoulli numbers, J. Number Theory 52 (1995) 157-172], as well as a relation of symmetry between the power sum polynomials and the Bernoulli numbers developed in [H.J.H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001) 258-261], are all special cases of our results.  相似文献   

13.
The main purpose of this paper is to introduce and investigate a new class of generalized Apostol–Bernoulli polynomials based on a definition given by Natalini and Bernardini (2003) [22] for the generalized Bernoulli polynomials. We obtain a generalization of the Srivastava–Pintér addition theorem (Srivastava and Pintér (2004) [23]). We also give a list of expressions involving special functions that could be used to obtain some analogues of the Srivastava–Pintér addition theorem. Finally, we give an analogue featuring the new class of generalized Apostol–Bernoulli polynomials.  相似文献   

14.
Recently, Chan, Chyan and Srivastava [W.-C.C. Chan, C.-J. Chyan, H.M. Srivastava, The Lagrange polynomials in several variables, Integral Transform. Spec. Funct. 12 (2001) 139-148] introduced and systematically investigated the Lagrange polynomials in several variables. In the present paper, we derive various families of multilinear and multilateral generating functions for the Chan-Chyan-Srivastava multivariable polynomials.  相似文献   

15.
Recently, Srivastava, Özarslan and Kaanoglu have introduced certain families of three and two variable polynomials, which include Lagrange and Lagrange-Hermite polynomials, and obtained families of two-sided linear generating functions between these families [H.M. Srivastava, M.A. Özarslan, C. Kaanoglu, Some families of generating functions for a certain class of three-variable polynomials, Integr. Transform. Spec. Funct. iFirst (2010) 1-12]. The main object of this investigation is to obtain new two-sided linear generating functions between these families by applying certain hypergeometric transformations. Furthermore, more general families of bilinear, bilateral, multilateral finite series relationships and generating functions are presented for them.  相似文献   

16.
The purpose of this article is to prove some approximation theorems of common fixed points for countable families of total quasi-?-asymptotically nonexpansive mappings which contain several kinds of mappings as its special cases in Banach spaces. In order to get the approximation theorems, the hybrid algorithms are presented and are used to approximate the common fixed points. Using this result, we also discuss the problem of strong convergence concerning the maximal monotone operators in a Banach space. The results of this article extend and improve the results of Matsushita and Takahashi [S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in Banach spaces, J. Approx. Theor. 134 (2005) 257-266], Plubtieng and Ungchittrakool [S. Plubtieng, K. Ungchittrakool, Hybrid iterative methods for convex feasibility problems and fixed point problems of relatively nonexpansive mappings in Banach spaces, J. Approx. Theor. 149 (2007) 103-115], Li, Su [H. Y. Li, Y. F. Su, Strong convergence theorems by a new hybrid for equilibrium problems and variational inequality problems, Nonlinear Anal. 72(2) (2010) 847-855], Su, Xu and Zhang [Y.F. Su, H.K. Xu, X. Zhang, Strong convergence theorems for two countable families of weak relatively nonexpansive mappings and applications, Nonlinear Anal. 73 (2010) 3890-3960], Wang et al. [Z.M. Wang, Y.F. Su, D.X. Wang, Y.C. Dong, A modified Halpern-type iteration algorithm for a family of hemi-relative nonexpansive mappings and systems of equilibrium problems in Banach spaces, J. Comput. Appl. Math. 235 (2011) 2364-2371], Chang et al. [S.S. Chang, H.W. Joseph Lee, Chi Kin Chan, A new hybrid method for solving a generalized equilibrium problem solving a variational inequality problem and obtaining common fixed points in Banach spaces with applications, Nonlinear Anal. 73 (2010) 2260-2270], Chang et al. [S.S. Chang, C.K. Chan, H.W. Joseph Lee, Modified block iterative algorithm for quasi-?-asymptotically nonexpansive mappings and equilibrium problem in Banach spaces, Appl. Math. Comput. 217 (2011) 7520-7530], Ofoedu and Malonza [E.U. Ofoedu, D.M. Malonza, Hybrid approximation of solutions of nonlinear operator equations and application to equation of Hammerstein-type, Appl. Math. Comput. 217 (2011) 6019-6030] and Yao et al. [Y.H. Yao, Y.C. Liou, S.M. Kang, Strong convergence of an iterative algorithm on an infinite countable family of nonexpansive mappings, Appl. Math. Comput. 208 (2009) 211-218].  相似文献   

17.
In a recent contribution [N.M. Atakishiyev, A.U. Klimyk, On discrete q-ultraspherical polynomials and their duals, J. Math. Anal. Appl. 306 (2005) 637-645], the so-named discrete q-ultraspherical polynomials were introduced as a specialization of the big q-Jacobi polynomials, and their orthogonality established for values of the parameter outside its commonly known domain but inside the range of validity of the conditions of Favard's theorem. In this paper we consider both the continuous and the discrete q-ultraspherical polynomials and we prove that their orthogonality is guaranteed for the whole range of the allowed parameters, even in those intriguing cases in which the three term recurrence relation breaks down. The presence of either the Askey-Wilson divided difference operator (in the continuous case), or the q-derivative operator (in the discrete one), provides the q-Sobolev character of the non-standard inner products introduced in our approach.  相似文献   

18.
19.
In this paper, we give some properties of the zeros of d-symmetric d-orthogonal polynomials and we localize these zeros on (d+1) rays emanating from the origin. We apply the obtained results to some known polynomials. In particular, we partially solve the conjecture about the zeros of the Humbert polynomials stated by Milovanovi? and Dordevi? [G.V. Milovanovi?, G.B. Dordevi?, On some properties of Humbert's polynomials, II, Ser. Math. Inform. 6 (1991) 23-30]. A study of the eigenvalues of a particular banded Hessenberg matrix is done.  相似文献   

20.
In the geometric function theory (GFT) much attention is paid to various linear integral operators mapping the class S of the univalent functions and its subclasses into themselves. In [12] and [13] Hohlov obtained sufficient conditions that guarantee such mappings for the operator defined by means of Hadamard product with the Gauss hypergeometric function. In our earlier papers as [20], [19], [17] and [18], etc., we extended his method to the operators of the generalized fractional calculus (GFC, [16]). These operators have product functions of the forms m+1Fm and m+1Ψm and integral representations by means of the Meijer G- and Fox H-functions. Here we propose sufficient conditions that guarantee mapping of the univalent, respectively of the convex functions, into univalent functions in the case of the celebrated Dziok-Srivastava operator ([8] : J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput.103, No 1 (1999), pp. 1-13) defined as a Hadamard product with an arbitrary generalized hypergeometric function pFq. Similar conditions are suggested also for its extension involving the Wright pΨq-function and called the Srivastava-Wright operator (Srivastava, [36]). Since the discussed operators include the above-mentioned GFC operators and many their particular cases (operators of the classical FC), from the results proposed here one can derive univalence criteria for many named operators in the GFT, as the operators of Hohlov, Carlson and Shaffer, Saigo, Libera, Bernardi, Erdélyi-Kober, etc., by giving particular values to the orders p ? q + 1 of the generalized hypergeometric functions and to their parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号