首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用微湿含浸法制备了有序中孔炭/四氧化三铁磁性材料.采用透射电镜和X射线衍射对复合材料进行了表征.将血红蛋白(Hb)固定于材料表面,对其直接电化学行为进行了研究,结果表明Hb在该材料内仍保持了其生物活性,在pH=7.0的PBS缓冲液中,血红蛋白表现出一对峰形良好的准可逆氧化还原峰,为Hb的Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰,求出式电位E0’为-0.306 V,电子转移数为n=1.226,电荷传递系数为α=0.51,表观异相电子转移速率常数为KS=0.0144s-1.在3.00×10-6到1.50×10-4mol/L浓度范围内,血红蛋白的浓度与其响应电流呈良好的线性关系,线性相关系数为R=0.9924,最低检测限为0.270×10-6mol/L.  相似文献   

2.
TiO2 nanoparticles were homogeneously coated on multi-walled carbon nanotubes by hydrothermal deposition, this nanocomposite may be a promising material for myoglobin immobilization in view of its high biocompatibility and large surface. The glassy carbon electrode modified with Mb-TiO2/MWCNTs films exhibited a pair of weU defined, stable and nearly reversible cycle voltammetric peaks. The electron transfer between Mb and electrode surface, Ks of 3.08 s^-1, was greatly facilitated in the TiO2/ MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were studied, the apparent Michaelis-Menten constant is calculated to be 83.10 μmol/L, which shows a large catalytic activity of Mb in the TiO2/MWCNTs film to H2O2.  相似文献   

3.
用壳聚糖对多壁碳纳米管进行修饰,构建了一种用于固定血红蛋白的新型复合材料,并研究了血红蛋白在该碳纳米管上的电化学性质及其对过氧化氢的电催化活性.扫描电镜结果表明,壳聚糖修饰的多壁碳纳米管呈单一的纳米管状,并能均匀分散在玻碳电极表面.紫外光谱分析表明血红蛋白在该复合膜内能很好地保持其原有的二级结构.将该材料固定在玻碳电极上后,血红蛋白能成功地实现其直接电化学.根据峰电位差随着扫描的变化,计算得到血红蛋白在壳聚糖修饰的碳纳米管膜上的电荷转移系数为0.57,表观电子转移速率常数为7.02 s-1.同时,该电极对过氧化氢显示出良好的催化性能,电流响应信号与H2O2浓度在1.0×10-6 ~1.5×10-3 mol/L间呈线性关系,检出限为5.0×10-7 mol/L.修饰电极显示了良好的稳定性.  相似文献   

4.
TiO(2) nanoparticles were homogeneously coated on multiwalled carbon nanotubes (MWCNTs) by hydrothermal deposition, and this nanocomposite might be a promising material for myoglobin (Mb) immobilization in view of its high biocompatibility and large surface. The glassy carbon (GC) electrode modified with Mb-TiO(2)/MWCNTs films exhibited a pair of well-defined, stable and nearly reversible cycle voltammetric peaks. The formal potential of Mb in TiO(2)/MWCNTs film was linearly varied in the range of pH 3-10 with a slope of 48.65 mV/pH, indicating that the electron transfer was accompanied by single proton transportation. The electron transfer between Mb and electrode surface, k(s) of 3.08 s(-1), was greatly facilitated in the TiO(2)/MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were also studied, and the apparent Michaelis-Menten constant is calculated to be 83.10 microM, which shows a large catalytic activity of Mb in the TiO(2)/MWCNTs film to H(2)O(2). The modified GC electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant Mb-TiO(2)/MWCNTs modified glassy carbon electrode exhibited fast amperometric response to hydrogen peroxide reduction, long term life and excellent stability. Finally the activity of the sensor for nitric oxide reduction was also investigated.  相似文献   

5.
In recent years the direct electron transfer of redox protein on electrode surface has attracted great attentions1. Different kind of modified electrode and various supporting films for immobilization of proteins had been proposed. But most of them are ba…  相似文献   

6.
Semi-interpenetrating polymer network (semi-IPN) hydrogel based on polyacrylamide (PAM) and chitosan was prepared to immobilize redox protein hemoglobin (Hb). The Hb-PAM-chitosan hydrogel film obtained has been investigated by scanning electron microscopy (SEM) and UV-VIS spectroscopy. UV-VIS spectroscopy showed that Hb kept its secondary structure similar to its native state in the Hb-PAM-chitosan hydrogel film. Cyclic voltammogram of Hb-PAM-chitosan film-modified glass carbon (GC) electrode showed a pair of well-defined and quasi-reversible redox peaks for Hb Fe(III)/Fe(II), indicating that direct electron transfer between Hb and GC electrode occurred. The electron-transfer rate constant was about 5.51 s(-1) in pH 7.0 buffers, and the formal potential (E degrees ') was -0.324 V (vs. SCE). The dependence of E degrees ' on solution pH indicated that one-proton transfer was coupled to each electron transfer in the direct electron-transfer reaction. Additionally, Hb in the semi-IPN hydrogel film retained its bioactivity and showed excellent electrocatalytic activity toward H(2)O(2). The electrocatalytic current values were linear with increasing concentration of H(2)O(2) in a wide range of 5-420 microM. The unique semi-IPN hydrogel would have wide potential applications in direct electrochemistry, biosensors and biocatalysis.  相似文献   

7.
Topoglidis E  Lutz T  Willis RL  Barnett CJ  Cass AE  Durrant JR 《Faraday discussions》2000,(116):35-46; discussion 67-75
We have investigated the use of nanoporous TiO2 films as substrates for protein immobilisation. Such films are of interest due to their high surface area, optical transparency, electrochemical activity and ease of fabrication. These films moreover allow detailed spectroscopic study of protein/electrode electron transfer processes. We find that protein immobilisation on such films may be readily achieved from aqueous solutions at 4 degrees C with a high binding stability and no detectable protein denaturation. The nanoporous structure of the film greatly enhances the active surface area available for protein binding (by a factor of up to 850 for an 8 microns thick film). We demonstrate that the redox state of proteins such as immobilised cytochrome-c (Cyt-c) and haemoglobin (Hb) may be modulated by the application of an electrical bias potential to the TiO2 film, without the addition of electron transfer mediators. The binding of Cyt-c on the TiO2 films is investigated as a function of film thickness, protein concentration, protein surface charge and ionic strength. We demonstrate the potential use of immobilised Hb on such TiO2 films for the detection of dissolved CO in aqueous solutions. We further show that protein/electrode electron transfer may be initiated by UV bandgap excitation of the TiO2 electrode. Both photooxidation and photoreduction of the immobilised proteins can be achieved. By employing pulsed UV laser excitation, the interfacial electron transfer kinetics can be monitored by transient optical spectroscopy, providing a novel probe of protein/electrode electron transfer kinetics. We conclude that nanoporous TiO2 films may be useful both for basic studies of protein/electrode interactions and for the development of novel bioanalytical devices such as biosensors.  相似文献   

8.
A novel biocompatible composite film containing sodium alginate (SA), room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), SiO2 nanoparticle, and hemoglobin (Hb) was fabricated and covered on the surface of a traditional carbon paste elecrode (CPE). The immobilized Hb on the electrode surface showed good direct electrochemical behaviors, and a pair of quasi-reversible redox peaks of Hb was obtained, which indicated that the direct electron transfer of Hb with the electrode surface had been achieved. The SA/nano-SiO2/BMIMPF6/Hb/CPE showed dramatically electrocatalytic activity to the reduction of trichloroacetic acid, hydrogen peroxide (H2O2), and oxygen (O2). The kinetic parameters for the electrocatalytic reactions were evaluated. The composite film showed the potential to the biosensor and biocatalysis.  相似文献   

9.
碳糊电极上无机膜固载血红蛋白的直接电化学   总被引:12,自引:0,他引:12  
报道了用硅溶胶-凝胶(Sol-gel)膜将血红蛋白(Hb)固载于碳糊电极上的直接电化学行为.研究结果表明,Hb-Sol-gel修饰的碳糊电极在pH=7.0的缓冲溶液中于-0.275V(vs.Ag/AgCl)处有一对可逆的循环伏安氧化-还原峰,为Hb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.HbFe(Ⅲ)/Fe(Ⅱ)电对的式量电位在pH5.0~11.0范围内与溶液pH值呈线性关系,表明Hb的电化学还原很可能是一个质子伴随着一个电子的电极过程.FTIR光谱证实,Sol-gel膜对Hb的固载没有破坏其天然结构.Hb-Sol-gel修饰的碳糊电极能够催化还原H2O2,可望将其用于制作第三代生物传感器.  相似文献   

10.
采用吸附和电化学聚合修饰方法,制得了聚亚甲基蓝-碳纳米管聚合膜玻碳电极(PMB-MWNTs/GCE),再将血红蛋白(Hb)固定在PMB-MwNTs/GCE表面,制备了稳定的Hb/PMB-MwNTs//GCE的H2O2生物传感器,并用循环伏安法对修饰电极的生物电催化行为进行了表征.研究结果表明,固定在PMB-MWNTs/...  相似文献   

11.
Kafi AK  Kwon YS 《Talanta》2008,76(5):1029-1034
This study investigated lipid-protein LB film formation with Brewster angle microscopy. Our experimental results show that hemoglobin (Hb) molecules can enter the lipid layer and remain for an extended time. We investigated the KCl effect on the LB monolayer of lipid-protein. The lipid-Hb monolayer was transferred from the air-water interface to a QCM gold electrode. UV-vis spectra showed that Hb retained its natural structure in the lipid layer. Cyclic voltammetric (CV) and amperometric systems were applied in this study in order to confirm the remaining bioactivity and sensitivity of Hb to hydrogen peroxide (H(2)O(2)). Lipid-Hb-modified electrodes showed well-defined redox peaks, indicating that the direct electron transfer between Hb and the electrode was enhanced by Hb incorporated in lipid layer. Based on this phenomenon, a novel biosensor for H(2)O(2) was designed. Experimental conditions influencing the biosensor performance such as pH, and potential were optimized and assessed. The levels of the R.S.D.'s (<5%) for the entire analyses reflected the highly reproducible sensor performance. Using optimized conditions the linear range for the detection of H(2)O(2) was observed from 1 x 10(-6) to 1.00 x 10(-4) molL(-1) with a detection limit of 4.00 x 10(-7) molL(-1) (based on the S/N=3).  相似文献   

12.
Room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) was used as a binder to construct a new carbon ionic liquid electrode (CILE), which exhibited enhanced electrochemical behavior as compared with the traditional carbon paste electrode with paraffin. By using the CILE as the basal electrode, hemoglobin (Hb) was immobilized on the surface of the CILE with nano-CaCO3 and Nafion film step by step. The Hb molecule in the film kept its native structure and showed good electrochemical behavior. In pH 7.0 Britton-Robinson (B-R) buffer solution, a pair of well-defined, quasi-reversible cyclic voltammetric peaks appeared with cathodic and anodic peak potentials located at -0.444 and -0.285 V (vs SCE), respectively, and the formal potential (E degrees') was at -0.365 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The formal potential of Hb shifted linearly to the increase of buffer pH with a slope of -50.6 mV pH-1, indicating that one electron transferred was accompanied with one proton transportation. Ultraviolet-visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopy studies showed that Hb immobilized in the Nafion/nano-CaCO3 film still remained its native arrangement. The Hb modified electrode showed an excellent electrocatalytic behavior to the reduction of H2O2, trichloroacetic acid (TCA), and NaNO2.  相似文献   

13.
Multi-walled carbon nanotubes(MWCNTs) were coated with ZnO by a hydrothermal method.The resulting nanocomposites were mixed with the Nafion solution to form a composite matrix for the fabrication of hemoglobin(Hb) biosensor.To prevent the leak of Hb molecules of the biosensor,silica sol-gel film was coated on the surface of the Hb/ZnO-MWCNTs/Nafion electrode.The silica sol-gel/Hb/ZnO-MWCNTs/Nafion film exhibited a pair of well-defined,quasi-reversible redox peaks.This biosensor showed excellent electroca...  相似文献   

14.
The direct electrochemistry of hemoglobin (Hb) immobilized in polyacrylonitrile (PAN) modified glassy carbon electrode was described. The protein-PAN film exhibited a pair of well-defined and quasi-reversible cyclic voltammetric peaks for Hb Fe(III)/Fe(II) redox couple in a pH 7.0 phosphate buffer. The formal potential of Hb heme Fe(III)/Fe(II) couple varied linearly with the increase of pH in the range of 5.0-9.0 with a slope of 54 mV pH(-1), which implied that a proton transfer was accompanied with each electron transfer in the electrochemical reaction. Position of Soret absorption band of Hb-PAN film suggested that the Hb kept its secondary structure similar to its native state in the PAN matrix. The Hb in PAN matrix acted as a biologic catalyst to catalyze the reduction of hydrogen peroxide. The electrocatalytic response showed a linear dependence on the H(2)O(2) concentration ranging from 8.3 x 10(-6) to 5 x 10(-4) mol L(-1) with a detection limit of 8.3 x 10(-6) mol L(-1) at 3 sigma. The apparent Michaelis-Menten constant K(M)(app) for H(2)O(2) sensor was estimated to be 0.9 mmol L(-1).  相似文献   

15.
We report the direct electrochemical and electrocatalytic properties of myoglobin (MB) on a multi-walled carbon nanotube/ciprofloxacin (MWCNT/CF) film-modified electrode. A highly homogeneous MWCNT thin-film was prepared on an electrode surface using ciprofloxacin (CF) as a dispersing agent. MB was then electrochemically deposited onto the MWCNT/CF-modified electrode. The MB/MWCNT/CF film was characterized by scanning electron microscopy and UV-visible spectroscopy (UV-vis). UV-vis spectra confirmed that MB retained its original state on the MWCNT/CF film. Direct electrochemical properties of MB on the MWCNT/CF film were investigated by cyclic voltammetry. The formal potential and electron transfer rate constant were evaluated in pH 7.2 buffer solution as -0.327V and 300s(-1), respectively. In addition, the MB/MWCNT/CF-modified electrode showed excellent electrocatalytic properties for the reduction of hydrogen peroxide (H(2)O(2)). The MB/MWCNT/CF-modified electrode was used for the detection of H(2)O(2) at concentrations from 1×10(-6)M to 7×10(-4)M in pH 7.2 buffer solution. Overall, the MB/MWCNT/CF-modified electrode was very stable and has potential for development as a H(2)O(2) sensor.  相似文献   

16.
制备了离子液体[BMIM]PF6修饰碳糊电极(CILE), 并对其形貌和电化学行为进行了表征. 采用涂布法利用壳聚糖-皂土有机-无机复合膜将血红蛋白(Hb)固定于CILE电极表面, 利用紫外可见光谱、红外光谱和电化学方法等手段对包埋于膜内的Hb的性质进行了表征. 结果表明, Hb在薄膜内保持了其原始构象与生物活性, 循环伏安实验表明, 在pH=7.0的Britton-Robinson (B-R)缓冲液中, Hb表现出一对峰形良好的准可逆氧化还原峰, 为Hb Fe(III)/Fe(II)电对的特征峰, 对其直接电化学行为进行了研究, 求出式电位为-0.352 V(vs SCE), 电子转移数为0.885, 电荷传递系数为0.578, 表观异相电子转移速率常数为0.149 s-1.  相似文献   

17.
基于TiO2-石墨烯、离子液体和壳聚糖复合膜修饰玻碳电极制备了一种新型的电化学传感器。用循环伏安法研究了血红蛋白在该修饰电极上的直接电化学行为。结果表明,该纳米复合膜能有效地促进血红蛋白在电极上的直接电子转移,保持其生物催化活性。该传感器对H2O2具有良好的催化性能。H2O2的电流响应信号与其浓度在20~860μmol/L范围内呈良好的线性关系,检出限为0.1μmol/L(S/N=3)。传感器具有良好的稳定性和重现性。  相似文献   

18.
A novel approach that uses nature biological tissues, fish blood, for the study of the direct electron-transfer of hemoglobin and its catalytic activity for H(2)O(2) and NO(2)(-) is observed. The direct electron-transfer of hemoglobin in red blood cells in fish blood on glassy carbon electrode was observed for the first time. By simply casting fish blood on GC electrode surface and being air-dried, a pair of well-defined redox peaks for HbFe (III)/HbFe (II) appeared at about -0.36 V (vs SCE) at the fish blood film modified GCE in a pH 7.0 phosphate buffer solution. Ultraviolet visible (UV/VIS) characterization and the enhancement of the redox response of Hb by adding pure Hb in fish blood suggested that Hb preserved the native second structures in the fish blood film. Optical micrographs showed that the RBCs retained its integrity in blood. Hb in blood/GCE maintained its activity and could be used to electrocatalyze the reduction H(2)O(2) and NO(2)(-).  相似文献   

19.
Wang GF  Deng XH  Zhang WZ  Fang B 《Annali di chimica》2006,96(3-4):247-252
A novel renewable O2 sensor based on the direct electron transfer of hemoglobin (Hb) is proposed. Hb was immobilized on a gold nanoparticles (GNP) associated with a 1,4-benzenedimethanethiol (BDT) monolayer which were modified the electrode. The direct electrochemistry of Hb was investigated by electrochemical methods and cyclic voltammetric showing a pair of redox peaks of Hb. The high efficiency of the Hb/GNP/BDT modified gold electrode towards the catalytic electro-reduction of oxygen has been observed and the potential application of Hb/GNP/BDT modified gold electrode as biosensors to monitor O2 is proposed. The electrocatalytic response showed a linear dependence on the O2 concentration ranging from 2.0 to 40.0 micromol/L.  相似文献   

20.
DEA与SDS/n-C5H11OH/H2O微乳液的相互作用   总被引:1,自引:0,他引:1  
以循环伏安法研究了N,N-二乙基苯胺(DEA)与十二烷基硫酸钠(SDS)/正戊醇(n-C5H11OH)/H2O体系O/W和W/O结构微乳液的相互作用.结果表明,DEA在SDS/n-C5H11OH/H2O体系微乳液中有两种定位方式:其一,DEA分子在微乳液液滴膜相中定位于表面活性剂和助表面活性剂的极性基团附近;其二,DEA分子在微乳液液滴膜相中定位于表面活性剂疏水基团一侧.两种定位的分布与微乳液的结构和组成相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号