首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
半平面多边缘裂纹反平面问题的奇异积分方程   总被引:1,自引:0,他引:1  
利用复变函数和奇异积分方程方法,求解弹性范围内半平面多边缘裂纹的反平面问题.提出了满足半平面边界自由的由分布位错密度表示的单边缘裂纹的基本解,此基本解由主要部分和辅助部分组成.将半平面多边缘裂纹问题看作是许多单边缘裂纹问题的叠加,建立了一组Cauchy型奇异积分方程.然后,利用半开型积分法则求解该奇异积分方程,得到了裂纹端处的应力强度因子.最后,给出了几个数值算例.  相似文献   

2.
The stress fields in an orthotropic half-plane containing Volterra type climb and glide edge dislocations under plane stress condition are derived. The dislocation solutions are utilized to formulate integral equations for dislocation density functions on the surface of smooth cracks embedded in the half-plane under in-plane loads. The integral equations are of Cauchy singular type which are solved numerically. The dislocation density functions are employed to evaluate modes I and II stress intensity factors for multiple cracks with different configurations.  相似文献   

3.
In this study, the transient response of multiple cracks subjected to shear impact load in a half-plane is investigated. At first, exact analytical solution for the transient response of Volterra-type dislocation in a half-plane is obtained by using the Cagniard-de Hoop method of Laplace inversion and is expressed in explicit forms. The distributed dislocation technique is used to construct integral equations for a half-plane weakened by multiple arbitrary cracks. These equations are of Cauchy singular type at the location of dislocation solved numerically to obtain the dislocation density on the cracks faces. The dislocation densities are employed to determine dynamic stress intensity factors history for multiple smooth cracks. Finally, several examples are presented to demonstrate the applicability of the proposed solution.  相似文献   

4.
利用复变函数和奇异积分方程方法,求解反平面弹性中半平面边缘内分叉裂纹问题。提出了满足半平面边界自由的由分布位错密度表示的半平面中单裂纹的基本解,此基本解由主要部分和辅助部分组成。将半平面边缘内分叉裂纹问题看作是许多单裂纹问题的叠加,建立了以分布位错密度为未知函数的Cauchy型奇异积分方程组。然后,利用半开型积分法则求解奇异积分方程,得到了裂纹端处的应力强度因子。文中给出两个数值算例的计算结果。  相似文献   

5.
In the present paper dynamic stress intensity factor and strain energy density factor of multiple cracks in the functionally graded orthotropic half-plane under time-harmonic loading are investigated. By utilizing the Fourier transformation technique the stress fields are obtained for a functionally graded orthotropic half-plane containing a Volterra screw dislocation. The variations of the material properties are assumed to be exponential forms which the equilibrium has an analytical solution. The dislocation solution is utilized to formulate integral equation for the half-plane weakened by multiple smooth cracks under anti-plane deformation. The integral equations are of Cauchy singular type at the location of dislocation which are solved numerically to obtain the dislocation density on the faces of the cracks. The dislocation densities are employed to determined stress intensity factor and strain energy density factors (SEDFs) for multiple smooth cracks under anti-plane deformation. Numerical examples are provided to show the effects of material properties and the crack configuration on the dynamic stress intensity factors and SEDFs of the functionally graded orthotropic half-plane with multiple curved cracks.  相似文献   

6.
The two-dimensional thermoelastic crack problem in bonded dissimilar media or in a half-plane medium is considered. The proposed method for solving this problem consists of two parts. In the first part, complex potential functions are derived which are enforced to satisfy the continuity conditions across the interface, while the second part consists of the derivation of singular integral equations by introducing the dislocation functions along the crack border which are solved numerically. For both half-plane and two bonded half-plane problems associated with an insulated crack, the thermal stress intensity factors are computed numerically by using the appropriate interpolation formulae. The results compared with those of the homogeneous case given in the literature show that the method proposed here is effective, simple and general.  相似文献   

7.
The stress fields are obtained for a functionally graded strip containing a Volterra screw dislocation. The elastic shear modulus of the medium is considered to vary exponentially. The stress components exhibit Cauchy as well as logarithmic singularities at the dislocation location. The dislocation solution is utilized to formulate integral equations for the strip weakened by multiple smooth cracks under anti-plane deformation. Several examples are solved and stress intensity factors are obtained.  相似文献   

8.
The stress fields in an orthotropic layer containing climb and glide edge dislocations are obtained by means of the complex Fourier transform. Stress analysis in the intact layer under in-plane point loads is also carried out. These solutions are employed to derive integral equations for the layers weakened by several interacting cracks subject to in-plane deformation. The integral equations are of Cauchy singular type. These equations are solved numerically for the density of dislocations on a crack surface. The dislocation densities are utilized to derive stress intensity factor for cracks. Several examples are solved and the interaction between the two cracks is investigated.  相似文献   

9.
An asymmetric quasistationary problem for a prestressed half-plane with harmonic and Bartenev–Khazanovich potentials is solved based of the linearized theory of elasticity. The Mehler–Fock integral transform is used to solve the differential equations that describe the stress–strain state of the half-plane. The dependences of the normal and tangential stresses and stress intensity factors on the elongation are plotted  相似文献   

10.
In this paper closed-form expressions of the electroelastic field induced by a piezoelectric screw dislocation in a functionally graded piezoelectric plane and half-plane are derived. The material properties are assumed to vary exponentially along the x and y-directions. The solution for a screw dislocation in a functionally graded piezoelectric plane is obtained through introduction of two generalized stress functions. The solution for a screw dislocation in a functionally graded piezoelectric half-plane is derived by using the method of image. It is also found that the interaction between a piezoelectric screw dislocation and a circular insulating hole in the functionally graded piezoelectric material can be solved by using series expansion method.  相似文献   

11.
A half-space containing a surface-breaking crack of uniform depth is subjected to three-dimensional dynamic loading. The elastodynamic stress-analysis problem has been decomposed into two problems, which are symmetric and antisymmetric, respectively, relative to the plane of the crack. The formulation of each problem has been reduced to a system of singular integral equations of the first kind. The symmetric problem is governed by a single integral equation for the opening-mode dislocation density. A pair of coupled integral equations for the two sliding-mode dislocation densities govern the antisymmetric problem. The systems of integral equations are solved numerically. The stress-intensity factors are obtained directly from the dislocation densities. The formulation is valid for arbitrary 3-D loading of the half-space. As an example, an applied stress field corresponding to an incident Rayleigh surface wave has been considered. The dependence of the stress-intensity factors on the frequency, and on the angle of incidence, is displayed in a set of figures.  相似文献   

12.
In this paper, the problem of a crack embedded in a half-plane piezoelectric solid with traction-induction free boundary is analyzed. A system of singular integral equations is formulated for the materials with general anisotropic piezoelectric properties and for the crack with arbitrary orientation. The kernel functions developed are in complex form for general anisotropic piezoelectric materials and are then specialized to the case of transversely isotropic piezoelectric materials which are in real form. The obtained coupled mechanical and electric real kernel functions may be reduced to those kernel functions for purely elastic problems when the electric effects disappear. The system of singular integral equations is solved numerically and the coupling effects of the mechanical and electric phenomena are presented by the generalized stress intensity factors for transversely isotropic piezoelectric materials.  相似文献   

13.
Some composite materials are constructed of two dissimilar half-planes bonded by a nonhomogeneous elastic layer. In the present study, a crack is situated at the interface between the upper half-plane and the bonding layer of such a material, and another crack is located at the interface between the lower half-plane and the bonding layer. The material properties of the bonding layer vary continuously from those of the lower half-plane to those of the upper half-plane. Incoming shock stress waves impinge upon the two interface cracks normal to their surfaces. Fourier transformations were used to reduce the boundary conditions for the cracks to two pairs of dual integral equations in the Laplace domain. To solve these equations, the differences in the crack surface displacements were expanded in a series of functions that are zero-valued outside the cracks. The unknown coefficients in the series were solved using the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors were defined in the Laplace domain and were inverted numerically to physical space. Dynamic stress intensity factors were calculated numerically for selected crack configurations.  相似文献   

14.
The stress fields in an infinite plane containing Volterra type climb and glide edge dislocations under time-harmonic excitation are derived. The dislocation solutions are utilized to formulate integral equations for dislocation density functions on the surfaces of smooth cracks. The integral equations are of Cauchy singular type which are solved numerically for several different cases of crack configurations and arrangements. The results are used to evaluate modes I and II stress intensity factors for multiple smooth cracks.  相似文献   

15.
We consider the problem on the motion of an isotropic elastic body occupying the half-space z ≥ 0 on whose boundary, along the half-plane x ≥ 0, the horizontal components of displacement are given, while the remaining part of the boundary is stress-free. We seek the solution by the method of integral Laplace transforms with respect to time t and Fourier transforms with respect to the coordinates x, y; the problem is reduced to a system of Wiener-Hopf equations, which can be solved by the methods of singular-integral equations and circulants. We invert the integral transforms and reduce the solution to the Smirnov-Sobolev form. We calculate the tangential stress intensity coefficients near the boundary z = 0, x = 0, |y| < ∞ of the half-plane. The circulant method for solving the Wiener-Hopf system was proposed in [1]. A static problem similar to that considered in the present paper was solved earlier. The Hilbert problem was reduced to a system of Fredholm integral equations in [2]. In the present paper, we solve the above problem by reducing the solution to quadratures and a quasiregular system of Fredholm integral equations. We give a numerical solution of the Fredholm equations and calculate the integrals for the tangential stress intensity coefficients.  相似文献   

16.
The solutions of axisymmetric Volterra type climb and glide edge dislocations are obtained in a layer by means of the Hankel transforms. Utilizing the same procedure, Green’s function solution is obtained for a layer under self-equilibration normal ring traction. The distributed dislocation technique is used to construct integral equations for a system of co-axial annular cracks where the layer is under axisymmetric normal loads. These equations are solved numerically to obtain dislocation density on the cracks surfaces. The results are employed to determine stress intensity factors for annular and penny-shaped cracks and the interaction between two co-axial penny-shaped cracks is studied. Moreover, the stress intensity factors of the interacting cracks are determined such that they can be further used in conjunction with strain energy density (SED) failure criterion to obtain the possible direction of crack initiation that may not be apparent under mixed mode conditions.  相似文献   

17.
The frictionless contact problem of a functionally graded piezoelectric layered half-plane in-plane strain state under the action of a rigid flat or cylindrical punch is investigated in this paper. It is assumed that the punch is a perfect electrical conductor with a constant potential. The electro-elastic properties of the functionally graded piezoelectric materials (FGPMs) vary exponentially along the thickness direction. The problem is reduced to a pair of coupled Cauchy singular integral equations by using the Fourier integral transform technique and then is numerically solved to determine the contact pressure, surface electric charge distribution, normal stress and electric displacement fields. For a flat punch, the normal stress intensity factor and electric displacement intensity factor are also given to quantitatively characterize the singularity behavior at the punch ends. Numerical results show that both material property gradient of the FGPM layer and punch geometry have a significant influence on the contact performance of the FGPM layered half-plane.  相似文献   

18.
Summary For a two-dimensional piezoelectric plate, the thermoelectroelastic Green's functions for bimaterials subjected to a temperature discontinuity are presented by way of Stroh formalism. The study shows that the thermoelectroelastic Green's functions for bimaterials are composed of a particular solution and a corrective solution. All the solutions have their singularities, located at the point applied by the dislocation, as well as some image singularities, located at both the lower and the upper half-plane. Using the proposed thermoelectroelastic Green's functions, the problem of a crack of arbitrary orientation near a bimaterial interface between dissimilar thermopiezoelectric material is analysed, and a system of singular integral equations for the unknown temperature discontinuity, defined on the crack faces, is obtained. The stress and electric displacement (SED) intensity factors and strain energy density factor can be, then, evaluated by a numerical solution at the singular integral equations. As a consequence, the direction of crack growth can be estimated by way of strain energy density theory. Numerical results for the fracture angle are obtained to illustrate the application of the proposed formulation. Received 10 November 1997; accepted for publication 3 February 1998  相似文献   

19.
In this paper, the plane elasticity problem of an arbitrarily oriented crack in a FGM layer bonded to a homogeneous half-plane is considered. The problem is modeled by assuming that the elastic properties of the FGM layer are exponential functions of the thickness coordinate and are continuous at the interface of the FGM layer and the half-plane.The Fourier transform technique is used to reduce the problem to the solution of a system of Cauchy-type singular integral equations, which are solved numerically. The stress intensity factors are computed for various crack orientations, crack locations and material parameters. The results show that crack length, crack orientation and the non-homogeneity parameter of the strip material have significant effect on the fracture of the FGM layer.  相似文献   

20.
The Mehler–Fock transformation method is used to study the rolling of a rigid cylinder over a half-plane with initial stresses. The problem is reduced to a system of two dual integral equations, which are then reduced to a system of two integral Fredholm equations of the second kind. The system of integral equations is solved by the method of degenerate kernels. The dependences of the normal and tangential stresses on the elongation are plotted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号