首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The new organosilicon bromides (Me3Si)2(ZMe2Si)CSiMe2Br with Z=PhO or MeS have been prepared and new spectroscopic data obtained for the previously reported compounds with Z=H, F, Br, Me, Ph, MeO or PhS. Competitions between pairs of bromides for a deficiency of AgBF4 in Et2O, with the determination of the ratio of the fluoride products by 19F-NMR spectroscopy, have led to the following approximate relative reactivities of the bromides and so to the relative abilities of the γ-Z groups to provide anchimeric assistance to the leaving of Br in this reaction: Me, 1; Ph, 40; PhO, 3400; PhS, 5000; MeS, 7000; MeO, 54 000. In methanolysis in CH2Cl2, (Me3Si)2(MeOMe2Si)CSiMe2Cl has been found to be roughly 120 times as reactive as (Me3Si)2(PhOMe2Si)CSiMe2Cl. Combination of the results with previously available information suggests the following approximate order of ability of γ-groups Z to provide anchimeric assistance in reactions at the Si---X bonds in compounds (Me3Si)2(ZMe2Si)CSiMe2X: OCOMe>OMe>OCOCF3>MeS>PhS, PhO>N3, Cl>NCS>Ph>CH=CH2>Me.  相似文献   

2.
An efficient synthesis of Ph2P-C≡C-C≡C-Li, 1, was found, starting from commercially available (Z)-1-methoxybut-1-ene-3-yne and its diphenylphosphino derivative 2. The lithio compound 1 was condensed with electrophiles to give Ph2P-C≡C-C≡C—Σ (Σ = SiR3, SnR3, B(NiPr)2) 3. Compound 2 was easily transformed into the phosphonium salt 6 and the phosphine oxide 7 using MeI and H2O2 respectively. Derivatives 3 (Σ = SiMe3, SnMe3) are reactive at phosphorus and at the Σ group; complexation with W(CO)5THF gave the expected derivatives W(CO)5Ph2P-C≡C-C≡C—Σ (Σ = SiMe3, SnMe3), 10, and in the case of Σ = SnMe3, coupling reaction between Ph2P-C≡-C-C≡C-SnMe3, 3c, and (η5-IC5H4)Mn(CO)3 in the presence of PdCl2(CH3CN)2 as a catalyst gave the complex 11, Ph2P-C≡C-C≡C-(η5-C5H4)Mn(CO)3.  相似文献   

3.
赵新飞  陈浩  吴昊  王睿  崔义  傅强  杨帆  包信和 《物理化学学报》2018,34(12):1373-1380
利用NO2或O2作为氧化剂,研究了氧化锌在Au(111)和Cu(111)上的生长和结构。NO2表现了更好的氧化性能,有利于有序氧化锌纳米结构或薄膜的生长。在Au(111)和Cu(111)这两个表面上,化学计量比氧化锌都形成非极性的平面化ZnO(0001)的表面结构。在Au(111)上,NO2气氛下室温沉积锌倾向于形成双层氧化锌纳米结构;而在更高的沉积温度下,在NO2气氛中沉积锌则可同时观测到单层和双层氧化锌纳米结构。O2作为氧化剂时可导致形成亚化学计量比的ZnOx结构。由于铜和锌之间的强相互作用会促进锌的体相扩散,并且铜表面可以被氧化形成表面氧化物,整层氧化锌在Cu(111)上的生长相当困难。我们通过使用NO2作为氧化剂解决了这个问题,生长出了覆盖Cu(111)表面的满层有序氧化锌薄膜。这些有序氧化锌薄膜表面显示出莫尔条纹,表明存在一个ZnO和Cu(111)之间的莫尔超晶格。实验上观察到的超晶格结构与最近理论计算提出的Cu(111)上的氧化锌薄膜结构相符,具有最小应力。我们的研究表明,氧化锌薄膜的表界面结构可能会随氧化程度或氧化剂的不同而变化,而Cu(111)的表面氧化也可能影响氧化锌的生长。当Cu(111)表面被预氧化成铜表面氧化物时,ZnOx的生长模式会发生变化,锌原子会受到铜氧化物晶格的限域形成单位点锌。我们的研究表明了氧化锌的生长需要抑制锌向金属基底的扩散,并阻止亚化学计量比ZnOx的形成。因此,使用原子氧源有利于在Au(111)和Cu(111)表面上生长有序氧化锌薄膜。  相似文献   

4.
采用分子束外延法分别在650-920℃的Si(110)和920℃的Si(111)衬底表面生长出铁的硅化物纳米结构,并主要分析了920℃高温下纳米结构的形貌、组成相及其与Si衬底的取向关系.扫描隧道显微镜(STM)研究表明,920℃高温下,Si(110)衬底上生长的铁硅化合物完全以纳米线的形式存在,且其尺寸远大于650℃低温下外延生长的纳米线尺寸;Si(111)衬底上生长出三维岛和薄膜两种形貌的铁硅化合物,其中三维岛具有金属特性且直径约300 nm、高约155 nm,薄膜厚度约2 nm.电子背散射衍射研究表明920℃高温下Si(110)衬底上生长的纳米线仅以β-FeSi2的形式存在,且β-FeSi2相与衬底之间存在唯一的取向关系:β-FeSi2(101)//Si(11 1);β-FeSi2[010]//Si[110];Si(111)衬底上生长的三维岛由六方晶系的Fe2Si相组成,Fe2Si属于164空间群,晶胞常数为a=0.405 nm,c=0.509 nm;与衬底之间的取向关系为Fe2Si(001)∥Si(111)和Fe2Si[1 20]//Si[112].  相似文献   

5.
For over a quarter of a century the hydrogen-terminated Si(111) single-crystalline surface has been the gold standard as a starting point for silicon surface modification chemistry. However, creating a well-defined and stable interface based on Si-N bonds has remained elusive. Despite the fact that azides, nitro compounds, and amines do lead to the formation of surface Si-N, each of these modification schemes produces additional carbon- or oxygen-containing functional groups that in turn react with the surface itself, leaving contaminants that affect the interface properties for any further modification protocols. We describe the preparation of a Si(111) surface functionalized predominantly with Si-NH-Si species based on chlorination followed by the room temperature ammonia treatment utilizing NH(3)-saturated tetrahydrofuran (THF). The obtained surface has been characterized by infrared spectroscopy and X-ray photoelectron spectroscopy. This analysis was supplemented with DFT calculations. This newly characterized surface will join the previously established H-Si(111) and Cl-Si(111) surfaces as a general starting point for the preparation of oxygen- and carbon-free interfaces, with numerous potential applications.  相似文献   

6.
We investigated the interactions between the Si(111) surface and the Na, Mg, and Al atoms using cluster model calculations. Calculations were performed at levels of complete-active-space self-consistent-field (CASSCF) and multi-reference singly and doubly excited configuration interaction (MRSDCI) calculations using the model core potential method. Our calculations revealed that the most favorable sites of Na, Mg, and Al adsorption on Si(111) are on top (T1), bridge (B2), and 3-fold filled (T4) sites, respectively. The nature of chemical bonds between these metal atoms and the dangling bonds of the surface Si atoms are found to be essentially covalent.  相似文献   

7.
We experimentally demonstrated that pyridine/Si(111)-7 x 7 can act as an electron donor/acceptor pair as a result of the charge transfer from the electron-rich N atom of pyridine to the electron-deficient adatom of the Si surface, evidenced by the upshift of 1.8 eV (state A) for the N(1s) core level upon the formation of a datively bonded complex compared to physisorbed molecules. Another state (B) whose N(1s) binding energy downshifts by 1.2 eV was assigned to an adduct through Si-C and Si-N covalent linkages, formed via a [4 + 2]-like addition mechanism on Si(111)-7 x 7. Binding molecules through the formation of the dative bond resulted from significant electron transfer opens a new approach for the creation of Si-based molecular architectures and modification of semiconductor interfacial properties with unsaturated organic molecules.  相似文献   

8.
The interface diffusion and chemical reaction between a PZT (PbZrxTi1-xO3) layer and a Si(111) substrate during the annealing treatment in air have been studied by using XPS (X-Ray Photoelectron Spectroscopy) and AES (Auger Electron Spectroscopy). The results indicate that the Ti element in the PZT precursor reacted with residual carbon and silicon, diffused from the Si substrate, to form TiCx, TiSix species in the PZT layer during the thermal treatment. A great interface diffusion and chemical reaction took place on the interface of PZT Si also. The silicon atoms diffused from silicon substrate onto the surface of PZT layer. The oxygen atoms, which came from air, diffused into silicon substrate also and reacted with Si atoms to form a SiO2 interlayer between the PZT layer and the Si (111) substrate. The thickness of SiO2 interlayer was proportional to the square root of treatment time. The formation of the SiO2 interlayer was governed by the diffusion of oxygen in the PZT layer at low annealing tempera  相似文献   

9.
Irradiation using a low pressure mercury lamp (λ=ca. 250 nm) of argon matrices containing ca. 1% (Me2Si)6 and ca. 20% ethylene oxide (C2H4O) or nitrous oxide (N2O) for a period of ca. 20 h leads to the formation of the cyclic compound (Me2SiO)6. This has a 12-membered ring with alternating Si and O atoms. It is identified by comparison of its infrared spectrum with a spectrum of an authentic sample. The reaction appears to proceed by stepwise insertion of O atoms into Si---Si bonds.  相似文献   

10.
采用密度泛函理论研究了M(M=In,Ir)原子修饰的M-Au(111)合金表面的稳定性,并选其最优模型探讨了合金表面的活性及其对巴豆醛的吸附。合金的几何构型、形成能和结合能等性质表明,In-Au(111)面的稳定性随In原子的间距增大而提高,Ir-Au(111)面的稳定性随Ir原子的间距增大而降低。对于巴豆醛在MAu(111)面上的吸附,当其通过C=O吸附于合金表面的TopM位时,吸附能最大,吸附构型最稳定。从巴豆醛的结构变化、态密度、差分电荷密度以及Mulliken电荷布居等分析可以看出,稳定吸附构型的巴豆醛分子形变较大,电荷转移明显。其中,位于-7.04 eV至费米能级处的p、d轨道杂化,对体系的吸附具有重要贡献。分析比较In-Au(111)面与Ir-Au(111)面,发现后者的配体效应更佳,不仅具有更高的稳定性和活性,而且对于巴豆醛具有更强的吸附力。此外,相比于改性前的Au(111)面,M原子的修饰明显提升了金属表面的稳定性及吸附能力。  相似文献   

11.
Electron correlation effects associated with the dangling bond surface states of Si(111)-5×5, Si(111)-7×7 and Sn/Ge(111)-3×3 are analyzed. In all the cases, extensive LDA-calculations are performed and effective two-dimensional Hamiltonians are deduced. Our analysis of these Hamiltonians shows that: (a) the Si(111)-5×5 surface states exhibits a metal-insulator transition; (b) the Si(111)-7×7 surface shows important similarities with the Si(111)-5×5 case, but it has a dangling bond surface band having a metallic character; (c) finally, the Sn/Ge(111)-3×3 dangling bond surface bands also shows important correlation effects that are found, however, not to affect the metallic character of the surface bands.  相似文献   

12.
The gaseous equilibria involving the molecules AuSi, AuSi2 and Au2Si have been studied by means of the Knudsen effusion technique combined with mass spectrometric analysis of the vapor. The experimentally determined reaction enthalpies were combined with appropriate literature data to obtain the following atomization energies (in kJ mole−1): D00[AuSi(g)] = 301.0 ± 6.0, D00[Au2Si(g)] = 582.7 ± 15 and D00[AuSi2(g)] = 602.1 ± 15. The corresponding D0298 values are: 305.2 ± 6.0, 589.1 ± 15 and 610.5 ± 15, and the standard heats of formation, ΔH0f,298, 518.6, 602.9 and 668.9, respectively.

Comparison of the atomization energies of these silicon—gold molecules with the literature values for the corresponding germanium—gold and tin—gold molecules indicates similarity in the nature of bonding.  相似文献   


13.
Chemical force titrations-plots of the adhesive force between an atomic force microscope tip and sample as a function of pH-were acquired on alkyl monolayer-derivatized Si(111) surfaces. Gold-coated AFM tips modified with thioalkanoic acid self-assembled monolayers (SAM) were employed. Alkyl monolayer-derivatized Si(111) surfaces terminated with methyl, carboxyl, and amine groups were produced via hydrosilylation reactions between 1-alkene reagents and H-terminated silicon. The functionalized surfaces were characterized using standard surface science techniques (AFM, FTIR, and XPS). Titration of the methyl-terminated surface using the modified (carboxyl-terminated) atomic force microscope tip resulted in a small pH-independent hydrophobic interaction. Titration of the amine-terminated surface using the same tip resulted in the determination of a surface pKa of 5.8 for the amine from the pH value from the maximum in the force titration curve. A pK(1/2) of 4.3 was determined for the carboxyl-terminated Si(111) in a similar way. These results will be discussed in relation to the modified Si(111) surface chemistry and organic layer structure, as well as with respect to existing results on Au surfaces modified with SAMs bearing the same functional groups.  相似文献   

14.
Mo(CO)6 adsorption on the clean, oxygen-precovered and deeply oxidized Si(111) surfaces was comparatively investigated by high-resolution electron energy loss spectroscopy. The downward vibrational frequency shift of the C-O stretching mode in adsorbed Mo(CO)6 illustrates that different interactions of adsorbed Mo(CO)6 occur on clean Si(111) and SiO2/Si(111) surfaces, weak on the former and strong on the latter. The strong interac-tion on SiO2/Si(111) might lead to the partial dissociation of Mo(CO)6, consequently the formation of molybdenum subcarbonyls. Therefore, employing Mo(CO)6 as the precursor, metallic molybdenum could be successfully deposited on the SiO2/Si(111) surface but not on the clean Si(111) surface. A portion of the deposited metallic molybdenum is transformed into the MoO3 on the SiO2/Si(111) surface upon heating, and the evolved MoO3 finally desorbs from the substrate upon annealing at elevated temperatures.  相似文献   

15.
The electronic and chemical (adsorption) properties of bimetallic Ag/Pt(111) surfaces and their modification upon surface alloy formation, that is, during intermixing of Ag and Pt atoms in the top atomic layer upon annealing, were studied by X‐ray photoelectron spectroscopy (XPS) and, using CO as probe molecule, by temperature‐programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), respectively. The surface alloys are prepared by deposition of sub‐monolayer Ag amounts on a Pt(111) surface at room temperature, leading to extended Ag monolayer islands on the substrate, and subsequent annealing of these surfaces. Surface alloy formation starts at ≈600–650 K, which is evidenced by core‐level shifts (CLSs) of the Ag(3d5/2) signal. A distinct change of the CO adsorption properties is observed when going to the intermixed PtAg surface alloys. Most prominently, we find the growth of a new desorption feature at higher temperature (≈550 K) in the TPD spectra upon surface alloy formation. This goes along with a shift of the COad‐related IR bands to lower wave number. Surface alloy formation is almost completed after heating to 700 K.  相似文献   

16.
The structure of self-assembled monolayers (SAMs) of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromo-ethyl ester (SAM-2) grown on hydrogen-passivated Si(111) were studied by X-ray reflectivity (XRR), X-ray standing waves (XSW), X-ray fluorescence (XRF), atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). The two different SAMs were grown by immersion of H-Si(111) substrates into the two different concentrated esters. UV irradiation during immersion was used to create Si dangling bond sites that act as initiators of the surface free-radical addition process that leads to film growth. The XRR structural analysis reveals that the molecules of SAM-1 and SAM-2 respectively have area densities corresponding to 50% and 57% of the density of Si(111) surface dangling bonds and produce films with less than 4 angstroms root-mean-square roughness that have layer thicknesses of 12.2 and 13.2 angstroms. Considering the molecular lengths, these thicknesses correspond to a 38 degrees and 23 degrees tilt angle for the respective molecules. For SAM-2/Si(111) samples, XRF analysis reveals a 0.58 monolayer (ML) Br total coverage. Single-crystal Bragg diffraction XSW analysis reveals (unexpectedly) that 0.48 ML of these Br atoms are at a Si(111) lattice position height that is identical to the T1 site that was previously found by XSW analysis for Br adsorbed onto Si(111) from a methanol solution and from ultrahigh vacuum. From the combined XPS, XRR, XRF, and XSW evidence, it is concluded that Br abstraction by reactive surface dangling bonds competes with olefin addition to the surface.  相似文献   

17.
We present detailed studies on the covalent adsorption of molecular oxygen and atomic hydrogen on the hexagonal boron nitride (h-BN) nanomesh on Rh(111). The functionalization of this two-dimensional (2D) material was investigated under ultra-high vacuum conditions using synchrotron radiation-based in situ high-resolution X-ray photoelectron spectroscopy, temperature-programmed X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. We are able to provide a deep insight into the adsorption behavior and thermal stability of oxygen and hydrogen on h-BN/Rh(111). Oxygen functionalization was achieved via a supersonic molecular beam while hydrogen functionalization was realized using an atomic hydrogen source. Adsorption of the respective species was observed to occur selectively in the pores of h-BN leading to spatially defined modification of the 2D layer. The adsorption of the observed molecular oxygen species was found to be an activated process that requires high-energy oxygen molecules. Upon heating to 700 K, oxygen functionalization was observed to be almost reversible except for small amounts of boron oxides evolving due to the reaction of oxygen with the 2D material. Hydrogen functionalization of h-BN/Rh(111) was fully reversed upon heating to about 640 K.  相似文献   

18.
Reductive dehalogenation of the (chloro)(phenylethynyl)phosphine (2,4,6-tBu3C6H2O)(PhCC)PCl, I, by Co2(CO)8, II, yields the neutral phosphenium ion complex [(R)(R′)]P=Co(CO)3, III, (R = 2,4,6-tBu3C6H2O; R′ = (η2-C≡CPh)Co2(CO)6), which contains a trigonally planar coordinated phosphorus atom. When NaCo(CO)4, V, is used instead of II a dinuclear complex, Co2(CO)62-P(R)(R′)]2, VI, (R = 2,4,6-tBu3C6H2O; R′ = C≡CPh) is formed in which the phosphido ligands P(R)(R′), bridge in a μ2 fashion two Co(CO)3 units. The mechanism of formation of VI, involving a formal dimerization of two [(2,4,6-tBu3C6H2O)(PhC≡C)]P=Co(CO)3 fragments, is discussed. However, (tBu)(PhC≡C)PCl, VII, reacts with II, to yield the cluster compound VIII, containing the two μ2-bridging units (tBu)[(η2-C≡CPh)Co2(CO)5]P and (tBu)(PhC≡C)P.

Compounds II and VI–VIII were identified from their analytical and spectroscopic (IR, 1H-, 13C- and 31P-NMR) data. The molecular structure of the cluster compound VIII was determined by an X-ray diffraction study.  相似文献   


19.
Using a variable temperature STM to trace in detail the path of single particle movement, it is possible to derive diffusion parameters of individual atoms and molecules on solid surfaces as well as to probe the mechanisms. Below ˜370 °C, O2 molecules adsorb on Si(111)-7×7 surfaces at the top site of Si-adatoms as bright image spots. An O2 molecule can hop between two adatom sites within the half unit cell it adsorbs via two rest-atom sites. Above this temperature, it can either hop out of the half cell, or can go through other reaction pathways. In contrast, for H atoms, the adsorption sites are rest-atom sites. An H atom darkens the rest-atom in filled state image, but the surrounding adatoms will appear brighter because of a reverse charge transfer. Above ˜280 °C, it can hop to a neighbor rest atom site within the half cell via an adatom site. The adatom in the short lived intermediate state appears darker because of the saturation of its dangling bond. Above ˜340 °C, it can hop out of the half cell via two adatom sites. Thus diffusion of H and O2 on this surface is achieved by hopping of chemical bonds via intermediate states. We have also derived site and pathway-specific activation energies and frequency factors and the potential energy curves for the hopping of O2 and H on Si(111)-7×7 surfaces.  相似文献   

20.
Scanning tunneling microscopy (STM) and computational modeling have been used to study the structure of ethyl-terminated Si(111) surfaces. The ethyl-terminated surface was prepared by treating the H-terminated Si(111) surface with PCl5 to form a Cl-terminated Si(111) surface with subsequent exposure to C(2)H(5)MgCl in tetrahydrofuran to produce an alkylated Si(111) surface. The STM data at 77 K revealed local, close-packed, and relatively ordered regions with a nearest-neighbor spacing of 0.38 nm as well as disordered regions. The average spot density corresponded to approximately 85% of the density of Si atop sites on an unreconstructed Si(111) surface. Molecular dynamics simulations of a Si(111) surface randomly populated with ethyl groups to a total coverage of approximately 80% confirmed that the ethyl-terminated Si(111) surface, in theory, can assume reasonable packing arrangements to accommodate such a high surface coverage, which could be produced by an exoergic surface functionalization route such as the two-step chlorination/alkylation process. Hence, it is possible to consistently interpret the STM data within a model suggested by recent X-ray photoelectron spectroscopic data and infrared absorption data, which indicate that the two-step halogenation/alkylation method can provide a relatively high coverage of ethyl groups on Si(111) surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号