首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
用稳态荧光光谱研究了以氧原子和哌嗪作为连接基的卟啉酞菁二元分子在不同溶剂中的分子内能量传递和电子转移过程结果表明;分子内的能量传递和电子转移是两个相互竞争的过程,在非极性溶剂中,激发单重态的能量传递是主要过程,而在极性溶剂中则以电子转移为主运用Rehm-Weller公式计算了两种二元化合物在不同溶剂中的电子转移反应的自由能变化△G0ET,表明溶剂的极性对电子转移反应的自由能变化△G0ET影响很大极性越大;体系中的电子转移反应的△G0ET、越负,电子转移反应越易进行由于电子转移过程较能量传递过程进行得快,所以表现为体系中能量传递效率降低而电子转移效率增大。两种二元化合物的能量传递效率(φEnT)利和电子转移效率(φET)随溶剂的极性的变化具有相同的变化趋势  相似文献   

2.
戴建玲  雷文龙  刘强 《化学学报》2019,77(9):911-915
以CuI为铜源, 通过原位形成光催化剂的途径, 实现了室温下可见光驱使铜催化溴二氟乙酸乙酯、溴二氟酰胺等对芳烃及杂芳烃的二氟烷基化反应. 该反应条件温和、原料廉价易得、底物适用范围广、产率较高, 为合成二氟烷基(杂)芳烃化合物提供了一种方法. 机理研究表明, 该反应可能经历了单电子转移的自由基反应历程.  相似文献   

3.
由缺电子光敏剂所引起的电子转移(ET)光氧化反应目前已受到广泛注意.然而,对于容易发生单线态氧(~1O_2)反应的稠环烯烃能否在氰基蒽敏化下发生ET光氧化仍研究甚少.最近作者报道了氰基蒽敏化的9-苯甲叉芴的ET光氧化过程.本文首次探讨了非交替稠环烃,苊烯(AN),在9,10-二氰蒽(DCA)或9-氰基蒽(CNA)敏化下的光氧化反应及其机理. Takeshita等不久前报道,AN受玫瑰红(RB)敏化生成的~1O_2反应产物为顺或反式  相似文献   

4.
有机物的光氧化反应可经历自由基链式反应、单线态氧(~1O_2)以及电子转移等三种基本类型的反应机理,对于电子转移的研究,仅近几年才开始受到重视。Foote等首先报道,芳香族取代烯烃在氰基蒽类敏化作用下发生电子转移(ET)光氧化反应,并已从几方面得以证明。最近Foote与作者之一利用亲核基团的分子内捕获环化反应证实了芳族烯烃自由基正离子的存在,进一步支持了上述电子转移机理。另一方面,脂肪族烯烃却易与亲电的~1O_2进行光氧化反应,即使用氰基蒽类敏化剂也往往如此。然而,至今只对为数很少的苯基取代的ET型光氧化进行了研究,例如  相似文献   

5.
金英学  王欣  曲凤玉  谭广慧  岳群峰 《有机化学》2012,32(12):2363-2367
合成了两种新的分子内给受电子体系N-[2-(2-三丁基锡甲硫基)乙基]邻苯二甲酰亚胺(1a)和N-(3-三丁基锡丙基)马来酰亚胺(1b),并在甲醇、乙腈-30%水、乙腈中进行了光诱导单电子转移反应.化合物1a在光诱导下发生分子内单电子转移反应,以很高的产率和区域选择性生成环胺醇2.化合物1b在光诱导下发生分子内单电子转移反应生成环胺醇3,同时有[2+2]环加成副反应产物4生成.以上所有新化合物的结构经质谱和核磁共振谱验证.  相似文献   

6.
全氟烷基芳基酮与苯基溴化镁电子转移反应的EPR研究   总被引:1,自引:0,他引:1  
有关酮与格氏试剂反应的自由基历程早有报道,运用EPR手段已经获得了自由基中间体存在的证据,但一直认为极性历程是该反应的主要途径.文献指出,二芳基酮的格氏反应是按单电子转移引发的自由基历程进行的,龚跃法等曾以2,5-二甲氧基苯基烷基酮(ArCOR)与叔丁基格氏试剂作用,发现亦由SET引发的自由基反应.本文运用ESR手段研究了全氟烷基芳基酮与苯基溴化镁的反应历程,证实了中间体阴离子自由基的存在。  相似文献   

7.
研究了从卤仿和氢氧化钠生成二卤卡宾的反应,根据化学和物理研究证明,是一单电子转移(SET)的反应机理.在类卡宾、三卤碳阴离子和二卤卡宾间设有平衡存在,卤素交换是单电子转移过程中形成的三卤甲基和二卤甲基游离基所引起的,它优先于卡宾对C=C的加成而发生,反应的初始电子给予体是CX3主要电子接受体是过量存在的卤仿.  相似文献   

8.
氮氧自由基可作为电子给体或受体,与氧化剂或还原剂发生单电子转移反应,也能在电极上被氧化或还原。深入研究氮氧自由基的电化学行为,对于阐明氮氧自由基的电子转移反应机理有着重要的意义,以往,仅Suemmermann报道过哌啶氮氧自由基在乙腈溶液中单电子氧化电极反应的动力学参数。我们曾研究了哌啶氮氧自由基于水溶液中的电化学行  相似文献   

9.
孙婧  张萌萌  锅小龙  王琪  王陆瑶 《有机化学》2023,(12):4251-4260
报道了一种以二芳基硒醚为硒基来源, K2S2O8为氧化剂,在无过渡金属条件下对N-芳基酰胺化合物的C(sp2)—H键直接官能化,合成了系列二芳基硒化合物的方法.机理研究表明,该反应经过单电子转移的自由基历程,中间体的稳定性决定了反应的选择性.该反应官能团兼容性好,位点选择性强,操作简便,成本低廉,是一种实用的二芳基硒化合物的合成方法.  相似文献   

10.
9,10-二氰蒽(DCA)敏化的烯烃和某些小环化合物的电子转移光氧化反应近年来研究很活跃。在芳烃光氧化方面,单重态氧反应限于多环芳烃和高度富电子的苯衍生物。一般烷基苯和富电子程度较小的芳烃,对~1O_2为隋性。因而电子转移历程为芳烃光氧化反应提供了新途径。但迄今芳烃的电子转移光氧化仍研究较少,历程看法也存在分歧。本文报道DCA和四氯对苯二醌(TCBQ)敏化的邻、间、对二甲苯(1,2,3),对-甲氧基  相似文献   

11.
Electrochemical science and technology in the 21st century have reached high levels of sophistication. A fundamental quantum mechanical theoretical frame for interfacial electrochemical electron transfer (ET) was introduced by Revaz Dogonadze. This frame has remained for four decades as a basis for comprehensive later theoretical work and data interpretation in many areas of chemistry, electrochemistry, and biology. We discuss here some new areas of theoretical electrochemical ET science, with focus on nanoscale electrochemical and bioelectrochemical sciences. Particular attention is given to in situ scanning tunneling microscopy (STM) and single-electron tunneling (SET, or Coulomb blockade) in electrochemical. systems directly in aqueous electrolyte solution and at room temperature. We illustrate the new theoretical formalism and its perspectives by recent cases of electrochemical SET, negative differential resistance patterns, and by ET dynamics of organized assemblies of biological macromolecules, such as redox metalloproteins and oligonucleotides on single-crystal Au(111)-electrode surfaces.  相似文献   

12.
In methanol/water, dpph(?) bleaching (519 nm) by quercetin, QH(2), exhibits biphasic kinetics. The dpph(?) reacts completely with the quercetin anion within 100 ms. Subsequent slower bleaching involves solvent and QH(2) addition to quinoid products. The fast reaction is first-order in dpph(?) but only ca. 0.38 order in [QH(2)]. This extraordinary nonintegral order is attributed to reversible formation of π-stacked {QH(-)/dpph(?)} complexes in which electron transfer to products, {QH(?)/dpph(-)}, is slow (k(ET) ≈ 10(5) s(-1)).  相似文献   

13.
Photoinduced reactions of chloranil (CA) with 1,1-diarylethenes 1 [(p-X-Ph)(2)C=CH(2), X = F, Cl, H, Me] in benzene afforded products 4-14, respectively, with the bicyclo[4.2.0]oct-3-ene-2,5-diones 4, the 6-diarylethenylcyclohexa-2,5-diene-1,4-diones 5, and 2,3,5, 6-tetrachlorohydroquinone 13 as the major primary products. The cyclobutane products 4 are formed via a triplet diradical intermediate without involvement of single electron transfer (SET) between the two reactants, while 5 is derived from a reaction sequence with initial SET interaction between (3)CA and the alkene. The 9-arylphenanthrene-1,4-diones 6 and its 10-hydroxy-derivatives 7 are secondary photochemical products derived from 5. The isomeric cage products 9-11 are formed from 4 via intramolecular benzene-alkene [2 + 2] (ortho-)photocycloadditions induced by the triplet excited enedione moiety. The relative amount of the two groups of products (4 and its secondary products 9-11 via non-SET route vs 5 and its secondary products 6, 7, 8, 12, and 14 via SET route) shows a rather regular change, with the ratio of non-SET route products gradually increasing with the increase in oxidation potential of the alkenes and in the positive free energy change for electron transfer (DeltaG(ET)) between (3)CA and the alkene, at the expense of the ratio of the products from the SET route. The competition between the SET and non-SET routes was also found to be drastically influenced by solvent polarity, with the SET pathways more favored in polar solvent. Photo-CIDNP investigations suggest the intermediacy of exciplexes or contact ion radical pairs in these reactions in benzene, while in acetonitrile, SET process led to the formation of CA(*)(-) and cation radical of the alkene in the form of solvent separated ion radical pairs and free ions.  相似文献   

14.
In this work, we have carried out a systematic study of the antioxidant activity of trans-resveratrol toward hydroxyl ((?)OH) and hydroperoxyl ((?)OOH) radicals in aqueous simulated media using density functional quantum chemistry and computational kinetics methods. All possible mechanisms have been considered: hydrogen atom transfer (HAT), proton-coupled electron transfer (PCET), sequential electron proton transfer (SEPT), and radical adduct formation (RAF). Rate constants have been calculated using conventional transition state theory in conjunction with the Collins-Kimball theory. Branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the global reactivity of trans-resveratrol toward (?)OH radicals, in water at physiological pH, the main mechanism of reaction is proposed to be the sequential electron proton transfer (SEPT). However, we show that trans-resveratrol always reacts with (?)OH radicals at a rate that is diffusion-controlled, independent of the reaction pathway. This explains why trans-resveratrol is an excellent but very unselective (?)OH radical scavenger that provides antioxidant protection to the cell. Reaction between trans-resveratrol and the hydroperoxyl radical occurs only by phenolic hydrogen abstraction. The total rate coefficient is predicted to be 1.42 × 10(5) M(-1) s(-1), which is much smaller than the ones for reactions of trans-resveratrol with (?)OH radicals, but still important. Since the (?)OOH half-life time is several orders larger than the one of the (?)OH radical, it should contribute significantly to trans-resveratrol oxidation in aqueous biological media. Thus, trans-resveratrol may act as an efficient (?)OOH, and also presumably (?)OOR, radical scavenger.  相似文献   

15.
龚跃法  赵成学 《有机化学》1988,8(6):481-486
本文着重阐述了格氏试剂和酮的性质影响反应的一般规律,介绍了普遍接受的格氏试剂与酮反应的机理。讨论了溶剂及微量过渡金属对反应的影响。  相似文献   

16.
The single-electron tunneling (SET) spectroscopy of C(60) molecule in a double-barrier tunnel junction is investigated by combining the scanning tunneling spectroscopy experiment and the theoretical simulation using the modified orthodox theory. The interplay between the SET effect and the discrete energy levels of C(60) molecule is studied. Three types of SET spectroscopies with different characters are obtained, corresponding to different tunneling processes and consistent with the previous theoretical prediction. Both the charging mode and resonance mode can arouse the current increase in the SET spectroscopy. The resonance mode is realized mainly by two mechanisms, including the resonance when the electron spans the second junction after already spanning the first junction. Some previous confused results have been clarified. Our results show that three types of SET spectroscopies can be together examined to quantitatively determine the frontier orbitals of the nanostructure by identifying the modes of various current increases.  相似文献   

17.
Studies of the alpha-effect show increased reactivity of nucleophiles having lone pairs of electrons on atoms neighboring the lone pair involved in reactivity when compared to the basicity of the nucleophiles. Hammett-type plots and Br?nsted-type plots of substituted methylphenyl sulfates vs hydrogen peroxide anions and substituted N-methylbenzohydroxanates (NMBH) with substituted methylarenesulfonates or substituted arenedimethylsulfonium ions have large rho or beta(nuc) values, indicating a putative tightening of the usual S(N)2 transition states (anti-Hammond effect). Electrochemical studies of S(N)2-SET or reactivity indicate that SET character occurs in looser transition states, whereas S(N)2 transition states are associated with greater tightness. The alpha-effects for the series of sulfonium salts in completion reactions for 3-ClNMBH anions and 3-nitrophenolate anions are (log k(alpha)/k(normal)) 1.124 for dimethylphenyl sulfonium, 1.512 for dimethyl-1-naphthyl sulfonium, 1.835 for dimethyl-9-anthracenyl sulfonium, and 1.137 for S-methyldibenzylthiophenium. Correlations of the sizes of alpha-effects with typical SET (or ET) experimental parameters and the inverse dependence of the size of the alpha-effect on electron demand indicate inclusion of SET character in these S(N)2 transition states, vs no (or at least diminished) SET character in normal transition states. This dichotomy of tighter S(N)2 transition states, but looser SET transition states indicated in the alpha-effect, is examined in the present work.  相似文献   

18.
Theoretical calculations and gas-phase mass spectrometric studies were performed for the reaction of the naked (NO2+) and monosolvated (CH3NO2.NO2+) nitronium ion with several monosubstituted aromatic compounds. From these studies, we propose a general model for regioselectivity based on the single-electron transfer (SET) mechanism and an alternative mechanistic scheme for electrophilic aromatic nitration. This scheme considers the SET and the polar (Ingold-Hughes) mechanisms as extremes in a continuum pathway, the occurrence and extents of both mechanisms being governed mainly by the ability, or lack of ability, of the aromatic compound to transfer an electron to NO2+.  相似文献   

19.
A time-resolved kinetic study of the reactions of ring-substituted cumyloxyl radicals (4-X-CumO(?): X = OMe, t-Bu, Me, Cl, CF(3)) with methylferrocenes (Me(n)Fc: n = 2, 8, 10) has been carried out in acetonitrile solution. Evidence for an electron transfer (ET) process has been obtained for all radicals and an increase in reactivity has been observed on decreasing the oxidation potential of the ferrocene donor and on going from electron-releasing to electron-withdrawing ring substituents. Computations predict the formation of strongly bound π-stacked 4-X-CumO(?)/DcMFc complexes, characterized by intracomplex π-π distances around 4 ?. These findings point toward a (nonbonded) inner-sphere ET mechanism for the reactions of the 4-X-CumO(?)/Me(n)Fc couples.  相似文献   

20.
This feature article addresses several novel aspects regarding the peptide-mediated charge migrations, including: i) radical exchanges with tunable radical types (σ-radical versus π-radical) and electron-transfer (ET)-channel-tunable cooperative proton-coupled ET (PCET) mechanism, including hydrogen-atom transfer (HAT), single ET-channel PCET, double ET channel PCET, and channel-type-tunable (σ-channel versus π-channel) PCET; ii) hole hopping migration between the active groups in the side-chains and its controllability; iii) hole hopping through stepping-stones via a solvated “hole” form; and iv) electron hopping through positively charged groups as stepping-stones via a solvated electron state. In particular, the controllability of the ET channels (pathways and types) and solvated-“hole”/“electron”-based relay mechanisms are mainly mentioned. Clearly, this is an important addition to the well-documented mechanisms for charge migration in proteins. In view of the complexity of protein charge migration, further exploration on details of the stepping-stone-based relay mechanisms, by considering the properties and structures of the redox active centers, their intercalators, and the real surroundings, is still needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号