首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, tetrasodium nonamanganese octadecaoxide, Na4.32Mn9O18, was synthesized by reacting Mn2O3 with NaCl. One Mn atom occupies a site of 2/m symmetry, while all other atoms sit on mirror planes. The compound is isostructural with Na4Ti4Mn5O18 and suggestive of Mn3+/Mn4+ charge ordering. It has a double‐tunnel structure built up from double and triple chains of MnO6 octahedra and single chains of MnO5 square pyramids by corner sharing. Disordered Na+ cations occupy four crystallographic sites within the tunnels, including an unexpected new Na+ site discovered inside the large S‐shaped tunnel. A local‐ordering model is used to show the possible Na+ distribution, and the unit‐cell evolution during charging/discharging is explained on the basis of this local‐ordering model.  相似文献   

2.
New Sillenite-Type Compounds New sillenite-type compounds (Bi12(V3/4Na1/4)O20, Bi12MnO20, Bi12(Mn1/2Ge1/2)O20, Bi12(Mn3/4Na1/4)O20, Bi12(Mn2/3M1/3)O20 with M = Cu, Cd and Bi12(Mn1/2M1/2)O20 with M = B, Al, Co) were synthesized at 700–750°C in corundum crucibles. Lattice constants have been determined and UV/VIS spectra have been recorded.  相似文献   

3.
The First Oxomanganate(II): Na14Mn2O9 = Na14[MnO4]2O Na14Mn2O9 crystallizes trigonal, space group P3 , a = b = 6.669, c = 9.353 Å. The crystal structure han been refined by diffractometer data (1124 undependent reflections) to R = 0.050. Mn2+ is surrounded tetrahedrally (Mn? O = 2.09 Å). Effective Coordination Numbers, ECoN, and the Madelung Part of Lattice Energy, MAPLE, are calculated. Na14Mn2O9 represents the most kation-rich ternary oxid of the alkali metals.  相似文献   

4.
We have studied the correlation between the crystal structure and the catalytic activity of manganese oxides MnO, MnO2, Mn3O4, and Mn2O3 in liquid-phase oxidation of 1-octene by molecular oxygen. The catalytic activity decreases in the series of oxides with octahedral coordination environment for the manganese atoms MnO−Mn2O3−MnO2. The oxide Mn3O4 (with mixed tetrahedral and octahedral environment for the Mn atoms) catalyzes the process according to a different mechanism. L'vov Polytechnic State University, 12 S. Bandery ul., L'vov-13 290646, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 34, No. 5, pp. 324–327, September–October, 1998.  相似文献   

5.
A two-component pyrotechnical mixture containing MnO2 and Pb3O4 has been investigated by TG, DTG and DTA. It was found that under 48 % MnO2 content the oxygen release exceeds the value calculated on the basis of the reactions MnO2 → Mn3O4 and Pb3O4 → PbO. Above a MnO2 content of 7.5 % the decomposition is partly delayed and shifted to higher temperatures. With under 60% of MnO2, at about 700? the components react exothermally with an increase in weight. The combined heats of the reactions MnO2 → Mn2O3 and Pb3O4 → PbO give the highest value at 83 % of MnO2.  相似文献   

6.
Phase equilibria were established in Ho-Mn-O and Tb-Mn-O systems at 1100°C by varying the oxygen partial pressure from −log(PO2/atm)=0-13.00, and phase diagrams for the corresponding Ln2O3-MnO-MnO2 systems at 1100°C were presented. Stable Ln2O3, MnO, Mn3O4, LnMnO3, and LnMn2O5 phases were found at 1100°C, whereas Ln2Mn2O7, Ln2MnO4, Mn2O3, and MnO2 were not found to be stable. Small nonstoichiometric ranges were found in the LnMnO3 phase, with the composition of LnMnO3 represented as functions of log(PO2/atm), and . Activities of the components in the solid solution were calculated from these equations. The composition of LnMnO3 may range from Ln2O3 rich to Ln2O3 poor, while MnO is slightly nonstoichiometric, being oxygen rich and LnMn2O5 seems to be nonstoichiometric. Lattice constants of LnMnO3 quenched at different oxygen partial pressures and of LnMn2O5 quenched in air were determined. The standard Gibbs energy changes of the reactions appearing in the phase diagrams were also calculated. The relationship between the tolerance factor of LnMnO3 and ΔG0of reaction, (1/2)Ln2O3+MnO+(1/4)O2=LnMnO3, is shown graphically.  相似文献   

7.
Na2MnO2 was prepared via the azide/nitrate route. Stoichiometric mixtures of the precursors (Mn2O3, NaN3 and NaNO3) were heated in an appropriate regime up to 390 °C and annealed at this temperature for 20 h, in specially designed silver containers. As the most prominent feature, the crystal structure of Na2MnO2 (C2/c, Z = 12, a = 12.5026(9), b = 12.1006(9), c = 6.0939(4) Å, β = 117.94(0)°, 1556 independent reflections, R1 = 3.83 % (all data)) forms a three dimensional framework polyanion of corner sharing MnO4‐tetrahedra. The connectivity pattern of the tetrahedral building units corresponds to the moganite structure, a rare SiO2 modification. According to measurements of the magnetic susceptibility in the temperature range from 2 to 750 K, Na2MnO2 shows antiferromagnetic ordering below 250 K. Evaluation of the high temperature data employing the Curie‐Weiss law revealed a magnetic moment of μeff = 5.93 μB, confirming the presence of divalent manganese.  相似文献   

8.
On the Compound Sr7Mn4O15 and Structure Relations to Sr2MnO4 and α-SrMnO3 The “compound” hitherto described as a α modification of Sr2MnO4 is shown to consist of a mixture of SrO and the new monoclinic compound Sr7Mn4O15 crystallizing in the space group P 21/c, a = 681.78(6), b = 962.24(8), c = 1038.0(1) pm, β = 91.886(7)°, Z = 2. Up to 0.3 mm long black crystals were grown from prereacted Sr7Mn4O15, SrO, and SrCl2 at 1350°C in a sealed platinum tube under argon. Its structure is related to α-SrMnO3. It contains layers of cornershared double octahedra [O2/2OMnO3MnO2O1/2]7? parallel to (100). Above 100 K the magnetism of Sr7Mn4O15 follows the Curie Weiss law with Θ ~ -426 K and a moment μeff = 3.62 μB corresponding Mn4+.  相似文献   

9.
Nanorods of MnO2, Mn3O4, Mn2O3 and MnO are synthesized by hydrothermal reactions and subsequent annealing. It is shown that though different oxides experience distinct phase transition processes in the initial discharge, metallic Mn and Li2O are the end products of discharge, while MnO is the end product of recharge for all these oxides between 0.0 and 3.0 V vs. Li+/Li. Of these 4 manganese oxides, MnO is believed the most promising anode material for lithium ion batteries while MnO2 is the most promising cathode material for secondary lithium batteries.  相似文献   

10.
The reaction of MoO3 with various oxides of manganese (MnO, Mn2O3, Mn3O4 and MnO2) and with MnCO3 has been studied in air and nitrogen atmospheres employing DTA, TG and X-ray diffraction methods, with a view to elucidating the conditions for the formation of MnMoO4. Thermal decomposition of MnCO3 has also been studied in air and nitrogen atmospheres to help understand the mechanism of the reaction between MnCO3 and MoO3. The studies reveal that, whereas MnO, Mn2O3 and MnO2 react smoothly with MoO3 to form MnMoO4, Mn3O4 does not react with MoO3 in the temperature range investigated (48O–6OO°C). An equimolar mixture of MnCO3 and MoO3 reacts in air to yield MnMoO4, while only a mixture of Mn3O4 and MoO3 remains as final product when the same reaction is carried out in nitrogen. Marker studies reveal that manganese ions are the main diffusing species in the reaction between MoO3 and manganese oxides that result in MnMoO4.  相似文献   

11.
New data on the structure and reversible lithium intercalation properties of sodium-deficient nickel–manganese oxides are provided. Novel properties of oxides determine their potential for direct use as cathode materials in lithium-ion batteries. The studies are focused on Na x Ni0.5Mn0.5O2 with x?=?2/3. Between 500 and 700 °C, new layered oxides Na0.65Ni0.5Mn0.5O2 with P3-type structure are obtained by a simple precursor method that consists in thermal decomposition of mixed sodium–nickel–manganese acetate salts obtained by freeze-drying. The structure, morphology, and oxidation state of nickel and manganese ions of Na0.65Ni0.5Mn0.5O2 are determined by powder X-ray diffraction, SEM and TEM analysis, and X-ray photoelectron spectroscopy (XPS). The lithium intercalation in Na0.65Ni0.5Mn0.5O2 is carried out in model two-electrode lithium cells of the type Li|LiPF6(EC:DMC)|Na0.65Ni0.5Mn0.5O2. A new structural feature of Na0.65Ni0.5Mn0.5O2 as compared with well-known O3–NaNi0.5Mn0.5O2 and P2–Na2/3Ni1/3Mn2/3O2 is the development of layer stacking ensuring prismatic site occupancy for Na+ ions with shared face on one side and shared edges on the other side with surrounding Ni/MnO6 octahedra. The reversible lithium intercalation in Na0.65Ni0.5Mn0.5O2 is demonstrated and discussed.  相似文献   

12.
《中国化学快报》2023,34(4):107494
Lithium rich layered oxide (LRLO) has been considered as one of the promising cathodes for lithium-ion batteries (LIBs). The high voltage and large capacity of LRLO depend on Li2MnO3 phase. To ameliorate the electrochemical performance of Li2MnO3, also written as Li(Li1/3Mn2/3)O2, we propose a strategy to substitute Mn4+ and Li+ in Mn/Li transition metal layer with Ti4+, which can stabilize the structure of Li2MnO3 by inhibiting the excessive oxidation of O2? above 4.5 V. More significantly, the unequal-valent substitution brings about the emergence of interlayer Li vacancies, which can promote the Li-ion diffusion based on the enlarged interlayer and increase the capacity by activating the Mn3+/4+ redox. We designed Li0.7[Li1/3Mn2/3]0.7Ti0.3O2 with high interlayer Li vacancies, which presents a high capacity (290 mAh/g at 10 mA/g) and stable cycling performance (84% over 60 cycles at 50 mA/g). We predict that this strategy will be helpful to further improve the electrochemical performance of LRLOs.  相似文献   

13.
To realize a reversible solid‐state MnIII/IV redox couple in layered oxides, co‐operative Jahn–Teller distortion (CJTD) of six‐coordinate MnIII (t2g3–eg1) is a key factor in terms of structural and physical properties. We develop a single‐phase synthesis route for two polymorphs, namely distorted and undistorted P2‐type Na2/3MnO2 having different Mn stoichiometry, and investigate how the structural and stoichiometric difference influences electrochemical reaction. The distorted Na2/3MnO2 delivers 216 mAh g?1 as a 3 V class positive electrode, reaching 590 Wh (kg oxide)?1 with excellent cycle stability in a non‐aqueous Na cell and demonstrates better electrochemical behavior compared to undistorted Na2/3MnO2. Furthermore, reversible phase transitions correlated with CJTD are found upon (de)sodiation for distorted Na2/3MnO2, providing a new insight into utilization of the MnIII/IV redox couple for positive electrodes of Na‐ion batteries.  相似文献   

14.
利用十二核锰簇合物[Mn12O12(CH3COO)16(H2O)4]为前驱物,通过先碱解再灼烧的方法合成了一种钠锰氧化合物Na0.7MnO2.05。扫描电子显微镜(SEM)观察结果表明产物由微米级的扁平棒状晶体组成。电化学测试表明,Na0.7MnO2.05是一种性能比较优良的超级电容器电极材料。在0.5 mol·L-1 Na2SO4电解质溶液中和0~0.8 V电位窗口范围内,具有良好的循环稳定性能,充放电速率为0.125A·g-1时单电极比电容达121 F·g-1。  相似文献   

15.
The research about oxygen evolution reaction (OER) has attracted extensive attention. In this work, different manganese oxides with different shell thickness were firstly grown on the surface of carbon ball template, and then the carbon ball was removed by high-temperature calcination in air to obtain hollow rambutan-like Mn2O3 and MnO2–Mn2O3 with long nanowires. The concentration of inorganic manganese salt and the reaction time has a determining influence on the morphologies of manganese oxide. The as-prepared MnO2–Mn2O3 exhibits a lower overpotential than the Mn2O3 to achieve a current density of 10 mA cm?2. The Faradic efficiency of MnO2–Mn2O3 reaches to 94.1% during the bulk electrolysis, and the morphology of MnO2–Mn2O3 remains virtually unchanged after electrolysis, indicating the outstanding stability of the as-obtained MnO2–Mn2O3.  相似文献   

16.
The oxygen-deficient Ruddlesden-Popper (RP) phase Sr3Mn2O6 crystallizes with an ordered array of oxygen vacancies to afford a structure in which the Mn3+ ions exist in a square-pyramidal environment. The MnO5 polyhedra are linked through their corners to form a structure that is related to that observed for the single-layered material, Sr2MnO3.5. The nuclear and magnetic structures of a polycrystalline sample of Sr3Mn2O6 have been determined using Rietveld analysis of neutron powder diffraction data and electron diffraction techniques. The pure Mn3+ double-layered phase crystallizes in a superstructure of the simple RP subcell: tetragonal, P4/mbm, a=10.8686(2) Å and c=20.2051(3) Å.Magnetic susceptibility studies suggest a transition at ∼250 K to a canted antiferromagnetic ordered structure. The magnetic unit-cell consists of ferromagnetic clusters of corner-sharing MnO5 units, which are antiferromagnetically aligned to other clusters within the layers.  相似文献   

17.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

18.
Manganese(III) manganate(IV), one of the synthetic varieties of the birnessite group, is readily reduced in xylene suspension by cinnamyl alcohol. At moderate temperatures, including room temperature, γ-MnOOH (manganite) forms topotactically in extremely thin needles and is therefore easily overlooked in the X-ray examination. At higher temperatures further reduction occurs (MnIII → MnII), and Mn3O4 (hausmannite) appears in comparatively large, equant cristallites which are less distinctly oriented. For comparison Na4Mn14O27, 9H2O, which has also been investigated, is much more stable than Mn7O13, 5H2O. The same holds for finely divided synthetic varieties of the birnessite group precipitated from KMnO4 solutions; by their behaviour they are related to Na4Mn14O27, 9H2O rather than to Mn7O13, 5 H2O which is consistent with their substantial alkaline ion content. These results raise the question: is the so-called ‘todorokite’ a pure crystal species. According to present data ‘todorokite’ could be regarded as a transition product, i.e. as half decomposed buserite admixed with birnessite and substantial amounts of manganite.  相似文献   

19.
以浸渍在不同晶相TiO2 (金红石型(R)、锐钛矿型(A)和P25型(P))上的锰基催化剂为对象,研究了TiO2晶相对MnOx/TiO2催化剂催化NO氧化活性的影响。 结果表明,MnOx/TiO2(P)催化剂活性最高,NO转化率在300℃及GHSV = 20000 h-1条件下可达83%。 各催化剂活性顺序为MnOx/TiO2(P)>MnOx/TiO2(A)>MnOx/TiO2(R)。采用X射线粉末衍射、场发射扫描电子显微镜、X射线光电子能谱、H2程序升温还原和O2程序升温脱附等手段研究了TiO2晶相影响MnOx/TiO2催化剂催化活性的作用机理。结果表明,相比于A和R型TiO2,P型TiO2能够增加MnOx在其表面的分散度并抑制催化剂颗粒的团聚和粘连,且更有利于Mn2O3的生成,而后者催化NO氧化活性比其它MnOx更高;此外,P型TiO2可以增加MnOx尤其是Mn2O3的还原性,并可促进O2-从M3+-O键的脱附。  相似文献   

20.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号