首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Layered Li[Li0.16Ni0.21Mn0.63]O2 and Li[Li0.2Ni0.2Mn0.6]O2 compounds were successfully synthesized by radiated polymer gel (RPG) method. The effect of deficient Li on the structure and electrochemical performance was investigated by means of X-ray diffraction, X-ray absorption near-edge spectroscopy and electrochemical cell cycling. The reduced Ni valence in Li[Li0.16Ni0.21Mn0.63]O2 leads to a higher capacity owing to faster Li+ chemical diffusivity relative to the baseline composition Li[Li0.2Ni0.2Mn0.6]O2. Cyclic voltammograms (CV) and a simultaneous direct current (DC) resistance measurement were also performed on Li/Li[Li0.16Ni0.21Mn0.63]O2 and Li/Li[Li0.2Ni0.2Mn0.6]O2 cells. Li[Li0.16Ni0.21Mn0.63]O2 shows better electrochemical performance with a reversible capacity of 158 mA hg−1 at 1C rate at 20 °C.  相似文献   

2.
The electrochemical reactions of lithium with layered composite electrodes (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 were investigated at low voltages. The metal oxide 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 (x=0.95) which can also be represented in layered notation as Li(Mn0.46Ni0.46Ti0.05Li0.02)O2, can react with one equivalent of lithium during an initial discharge from 3.2 to 1.4 V vs. Li0. The electrochemical reaction, which corresponds to a theoretical capacity of 286 mAh/g, is hypothesized to form Li2(Mn0.46Ni0.46Ti0.05Li0.02)O2 that is isostructural with Li2MnO2 and Li2NiO2. Similar low-voltage electrochemical behavior is also observed with unsubstituted, standard LiMn0.5Ni0.5O2 electrodes (x=1). In situ X-ray absorption spectroscopy (XAS) data of Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 electrodes indicate that the low-voltage (<1.8 V) reaction is associated primarily with the reduction of Mn4+ to Mn2+. Symmetric rocking-chair cells with the configuration Li(Mn0.46Ni0.46Ti0.05Li0.02)O2/Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 were tested. These electrodes provide a rechargeable capacity in excess of 300 mAh/g when charged and discharged over a 3.3 to −3.3 V range and show an insignificant capacity loss on the initial cycle. These findings have implications for combating the capacity-loss effects at graphite, metal–alloy, or intermetallic negative electrodes against lithium metal-oxide positive electrodes of conventional lithium-ion cells.  相似文献   

3.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li_2MnO_3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li_2MnO_3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li_2Mn_(0.97)Ti_(0.03)O_3的首圈放电比容量达到209 m Ah·g~(-1),库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 m A·g~(-1)时,掺杂改性的样品仍然可以放出120 m Ah·g~(-1)比容量,远高于同等电流密度下未掺杂的Li_2MnO_3原粉的比容量(52 m Ah·g~(-1))。Ti掺杂可有效地改善Li_2MnO_3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   

4.
Monodisperse Li4Ti5O12 hollow spheres were prepared by using carbon spheres as templates. Scanning electron microscopy images show hollow spheres that have an average outer diameter of 1.0 μm and an average wall thickness of 60 nm. Compared with Li4Ti5O12 solids, the hollow spherical Li4Ti5O12 exhibit an excellent rate capability and capacity retention and can be charged/discharged at 10 C (1.7 A g−1) with a specific capacity of 100 mA h g−1, and after 200 charge and discharge cycles at 2 C, their specific capacity remain very stable at 150 mA h g−1. It is believed that the hollow structure has a relatively large contact surface between Li4Ti5O12 and liquid electrolyte, resulting in a better electrochemical performance at high charge/discharge rate.  相似文献   

5.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li2MnO3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li2MnO3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li2Mn0.9Ti0.03O3的首圈放电比容量达到209 mAh·g-1,库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 mA·g-1时,掺杂改性的样品仍然可以放出120 mAh·g-1比容量,远高于同等电流密度下未掺杂的Li2MnO3原粉的比容量(52 mAh·g-1)。Ti掺杂可有效地改善Li2MnO3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   

6.
Layered LiNi0.4Co0.2Mn0.4O2, Li[Li0.182Ni0.182Co0.091Mn0.545]O2, Li[Li1/3Mn2/3]O2 powder materials were prepared by rheological phase method. XRD characterization shows that these samples all have analogous structure to LiCoO2. Li[Li0.182Ni0.182Co0.091Mn0.545]O2 can be considered to be the solid solution of LiNi0.4Co0.2Mn0.4O2 and Li[Li1/3Mn2/3]O2. Detailed information from XRD, ex situ XPS measurement and electrochemical analysis of these three materials reveals the origin of the irreversible plateau (4.5 V) of Li[Li0.182Ni0.182Co0.091Mn0.545]O2 electrode. The irreversible oxidation reaction occurred in the first charging above 4.5 V is ascribed to the contribution of Li[Li1/3Mn2/3]O2 component, which maybe extract Li+ from the transition layer in Li[Li1/3Mn2/3]O2 or Li[Li0.182Ni0.182Co0.091Mn0.545]O2 through oxygen release. This step also activates Mn4+ of Li[Li1/3Mn2/3]O2 or Li[Li0.182Ni0.182Co0.091Mn0.545]O2, it can be reversibly reduced/oxidized between Mn4+ and Mn3+ in the subsequent cycles.  相似文献   

7.
Porous microspherical Li4Ti5O12 aggregates (LTO‐PSA) can be successfully prepared by using porous spherical TiO2 as a titanium source and lithium acetate as a lithium source followed by calcinations. The synthesized LTO‐PSA possess outstanding morphology, with nanosized, porous, and spherical distributions, that allow good electrochemical performances, including high reversible capacity, good cycling stability, and impressive rate capacity, to be achieved. The specific capacity of the LTO‐PSA at 30 C is as high as 141 mA h g?1, whereas that of normal Li4Ti5O12 powders prepared by a sol–gel method can only achieve 100 mA h g?1. This improved rate performance can be ascribed to small Li4Ti5O12 nanocrystallites, a three‐dimensional mesoporous structure, and enhanced ionic conductivity.  相似文献   

8.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C 包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X 射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X 射线能量散射谱(EDS)方法,研究了Ag/C 包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响. 结果表明,Ag/C 包覆层的厚度约为25 nm,Ag/C 包覆在保持了固溶体材料α-NaFeO2 六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2 的电化学性能. 在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30 次循环后,Ag/C 包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%. 循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   

9.
An electrochemical cell was developed for the in situ transmission X–ray Absorption Fine Structure measurements of the charge/discharge process of the cathode materials of lithium secondary batteries, from which Li can be electrochemically deintercalated or intercalated. The dynamical structural behavior of Mn in Li(Mn1.93Li0.07)O4, and Li(Mn1.85Li0.15)O4 as a function of both excess Li content and the Li deintercalation was revealed using the in situ cell. The analysis disclosed the coexistence of two MnO6–coordination polyhedra with different Mn–O distances for the Mn3+ and Mn4+ ions at the 16d site of the spinel structure. Because the charge–discharge process accompanies the oxidation–reduction of the Mn ions, this size difference causes an unfavorable lattice distortion for the electrode materials which can cause a loss of cell capacity after cyclic use of the cell. A partial substitution of Li for Mn will diminish this effect and will be favorable for the battery material.  相似文献   

10.
Carbon surface-modified Li-excess layered oxide solid solution Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode is fabricated through a liquid phase route using polyvinylpyrrolidone as carbon source. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the crystal structure and the chemical states of elements for Li[Li0.2Mn0.54Ni0.13Co0.13]O2 are kept after carbon surface treatment. The high-resolution transmission electron microscopy demonstrated the existence of very little carbon on the surface and the clear boundary after carbon treatment. The carbon surface-modified sample delivers a discharge capacity of 293.2 mAh?g?1 at C/10 rate (suppose 1 C rate?=?250 mA?g?1) and 191.6 mAh?g?1 at 1 C rate between 2.0 and 4.8 V; the capacity retention rate is ~86 % after 70 cycles at 1 C rate. Superior electrochemical properties can be contributed to the carbon surface modification in these aspects including minimizing nanoparticle aggregation and cell polarization, increasing the electronic conductivity, suppressing the elimination of oxide ion vacancies, as well as suppressing the formation of the thick solid electrolyte interfacial layer. Moreover, the annealing process of carbon surface modification might be able to consume Li2CO3 impurity partly and cause the recrystallization of the surface disordered layer.  相似文献   

11.
The spinel Li‐Mn‐O‐F compound cathode materials were synthesized by solid‐state reaction from calculated amounts LiOH‐H2O, MnO2(EMD) and LiF. The results of the electrochemical test demonstrated that these materials exhibited excellent electrochemical properties. It's initial capacity is ‐ 115 mAh.g1 and reversible efficiency is about 100%. After 60 cycles, its capacity is still around 110 mAh.g1 with nearly 100% reversible efficiency. The spinel Li‐Mn‐O‐F compound possibly has two structure models: interstitial model [Li]‐[Mn3+xMn4+2‐x]O4Fδ, in which the fluorine is located on the interstice of crystal lattice, and substituted model [Li]‐[Mn3+xMn4+2‐x]O4‐δFδ, which the fluorine atom substituted the oxygen atom. The electrochemical result supports the interstitial model [Li][Mn3+xMn4+2‐x]O4Fδ.  相似文献   

12.
Layered manganese-based oxides are promising candidates as cathode materials for sodium-ion batteries (SIBs) due to their low cost and high specific capacity. However, the Jahn–Teller distortion from high-spin Mn3+ induces detrimental lattice strain and severe structural degradation during sodiation and desodiation. Herein, lithium is introduced to partially substitute manganese ions to form distorted P′2-Na0.67Li0.05Mn0.95O2, which leads to restrained anisotropic change of Mn–O bond lengths and reinforced bond strength in the [MnO6] octahedra by mitigation of Jahn–Teller distortion and contraction of MnO2 layers. This ensures the structural stability during charge and discharge of P′2-Na0.67Li0.05Mn0.95O2 and Na+/vacancy disordering for facile Na+ diffusion in the Na layers with a low activation energy barrier of ∼0.53 eV. It exhibits a high specific capacity of 192.2 mA h g−1, good cycling stability (90.3% capacity retention after 100 cycles) and superior rate capability (118.5 mA h g−1 at 1.0 A g−1), as well as smooth charge/discharge profiles. This strategy is effective to tune the crystal structure of layered oxide cathodes for SIBs with high performance.

Li-Substitution in P′2-Na0.67MnO2 mitigates the anisotropic change of Mn–O bonds and Na/vacancy ordering, and hence significantly promotes its cycling stability and rate capability as a cathode material for sodium-ion batteries.  相似文献   

13.
Layered, lithium-rich Li[Li0.2Co0.3Mn0.5]O2 cathode material is synthesized by reactions under autogenic pressure at elevated temperature (RAPET) method, and its electrochemical behavior is studied in 2?M Li2SO4 aqueous solution and compared with that in a non-aqueous electrolyte. In cyclic voltammetry (CV), Li[Li0.2Co0.3Mn0.5]O2 electrode exhibits a pair of reversible redox peaks corresponding to lithium ion intercalation and deintercalation at the safe potential window without causing the electrolysis of water. CV experiments at various scan rates revealed a linear relationship between the peak current and the square root of scan rate for all peak pairs, indicating that the lithium ion intercalation–deintercalation processes are diffusion controlled. The corresponding diffusion coefficients are found to be in the order of 10?8?cm2?s?1. A typical cell employing Li[Li0.2Co0.3Mn0.5]O2 as cathode and LiTi2(PO4)3 as anode in 2?M Li2SO4 solution delivers a discharge capacity of 90?mA?h g?1. Electrochemical impedance spectral data measured at various discharge potentials are analyzed to determine the kinetic parameters which characterize intercalation–deintercalation of lithium ions in Li[Li0.2Co0.3Mn0.5]O2 from 2?M Li2SO4 aqueous electrolyte.  相似文献   

14.
The cubic phase LiMn2O4 precursors are prepared by high-temperature calcinations (1003 K) of LiOH⋅H2O and MnO2 mixture with Li/Mn molar ratio = 0.55. The Li4Mn5O12 precursors are synthesized via low-temperature solid-phase reaction (673 K) of LiNO3 and MnO2 mixture with Li/Mn molar ratio = 1.0. The ion-sieves counterparts (named SMO-H and SMO-L, respectively) are obtained by the acid treatment of Li-Mn-O precursors. The structure, chemical stability, morphology, ion-exchange property and mechanism of Li-Mn-O precursors and MnO2 ion-sieve were systematically examined via X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), Infrared Spectroscopy (IR), X-ray photoelectron spectroscopy (XPS) and lithium ion selective adsorption measurements. The result shows the more compact Mn-O lattice makes the Li4Mn5O12 spinel more stable after the Li+ is extracted. The results of IR and XPS show adsorption process of SMO-H exists ion-exchange between the Li+ and protons, and redox reaction, but only exists ion-exchange between the Li+ and protons in SMO-L. Agglomeration is well-improved by low calcination temperature and the morphology of the Li4Mn5O12 precursor and final MnO2 ion-sieve are effectively controlled within low-dimensional structure. The maximum pH titration capacity of SMO-L for Li+ is 6.76 mmol⋅g−1, but only 3.47 mmol⋅g−1 for SMO-H. The ion-sieve obtained from Li4Mn5O12 precursor is promising in the lithium extraction from brine or seawater.  相似文献   

15.
Spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode materials with different microstructure have been prepared by a continuous carbonate co-precipitation method using LiOH⋅H2O, Li2CO3, CH3COOLi⋅2H2O and LiNO3 as lithium source. The effects of Li source on the physical and electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that the morphology, tap density and high rate cycling performance of Li[Ni1/3Co1/3Mn1/3]O2 spherical particles are strongly affected by Li source. Among the four Li sources used in this study, LiOH⋅H2O is beneficial to enhance the tap density of Li[Ni1/3Co1/3Mn1/3]O2, and the tap density of as-prepared sample reaches 2.32 g cm−3. Meanwhile, Li2CO3 is preferable when preparing the Li[Ni1/3Co1/3Mn1/3]O2 with high rate cycling performance, upon extended cycling at 1 and 5C rates, 97.5% and 92% of the initial discharge capacity can be maintained after 100 cycles.  相似文献   

16.
The effect of a milling process on the electrochemical performance of Li2Ti3O7 electrodes has been investigated by the galvanostatic intermittent titration technique (GITT) and AC impedance spectroscopy. The insertion ratio is slightly increased by the milling treatment and a value of x Li=1.25 per mol Li2Ti3O7 has been determined. The average potential during insertion is close to 1.5 V/Li. The analysis of impedance data obtained at equilibrium during insertion and deinsertion shows two relaxation processes and a diffusion phenomenon at low frequency according to the Frumkin-Melik-Gayakazian model. Cycling experiments of batteries using this material were performed with unmilled and milled particles. Composite electrodes containing different amounts of electroactive material added to a binder and a conductive additive have also been prepared in order to check the effect of grinding on the cyclability of the compound. Interesting electrochemical performances have been determined with such electrodes: lithium uptake up to 1.25 Li per Li2Ti3O7, low irreversible capacity loss between the first and the following cycles, good stability upon cycling even after 50 cycles. However, the milled process has not improved significantly the electrochemical performance of the Li2Ti3O7 electrodes. Electronic Publication  相似文献   

17.
Low temperature synthesis and electrochemical properties of partially substituted lithium manganese oxides are reported. We demonstrate various metallic cations (Cu2+, Ni2+, Fe3+, Co3+) can be incorporated in the 3 V layered cathodic material Li0.45MnO2.1. New compounds Li0.45Mn0.88Fe0.12O2.1, Li0.45Mn0.84Ni0.16O2.05, Li0.45Mn0.79Cu0.21O2.3, Li0.45Mn0.85Co0.15O2.3 are prepared. These 3 V cathode materials are characterized by the same shape of discharge-charge profiles but different values of the specific capacity, between 90 mAh g−1 and 180 mAh g−1. The best results in terms of capacity and cycle life are obtained with the selected content of 0.15 Co per mole of oxide, as the optimum composition. The high kinetics of Li+ transport in Li0.45Mn0.85Co0.15O2.3 compared to that in the Co-free material is consistent with a substitution of Mn(III) by Co(III) in MnO2 sheets.  相似文献   

18.
A series of lithium–manganese–nickel-oxide compositions that can be represented in three-component notation, xLi[Mn1.5Ni0.5]O4 · (1  x){Li2MnO3 · Li(Mn0.5Ni0.5)O2}, in which a spinel component, Li[Mn1.5Ni0.5]O4, and two layered components, Li2MnO3 and Li(Mn0.5Ni0.5)O2, are structurally integrated in a highly complex manner, have been evaluated as electrodes in lithium cells for x = 1, 0.75, 0.50, 0.25 and 0. In this series of compounds, which is defined by the Li[Mn1.5Ni0.5]O4–{Li2MnO3 · Li(Mn0.5Ni0.5)O2} tie-line in the Li[Mn1.5Ni0.5]O4–Li2MnO3–Li(Mn0.5Ni0.5)O2 phase diagram, the Mn:Ni ratio in the spinel and the combined layered Li2MnO3 · Li(Mn0.5Ni0.5)O2 components is always 3:1. Powder X-ray diffraction patterns of the end members and the electrochemical profiles of cells with these electrodes are consistent with those expected for the spinel Li[Mn1.5Ni0.5]O4 (x = 1) and for ‘composite’ Li2MnO3 · Li(Mn0.5Ni0.5)O2 layered electrode structures (x = 0). Electrodes with intermediate values of x exhibit both spinel and layered character and yield extremely high capacities, reaching more than 250 mA h/g with good cycling stability between 2.0 V and 4.95 V vs. Li° at a current rate of 0.1 mA/cm2.  相似文献   

19.
The universal cathode crossover such as chemical and oxygen has been significantly overlooked in lithium metal batteries using high-energy cathodes which leads to severe capacity degradation and raises serious safety concerns. Herein, a versatile and thin (≈25 μm) interlayer composed of multifunctional active sites was developed to simultaneously regulate the Li deposition process and suppress the cathode crossover. The as-induced dual-gradient solid-electrolyte interphase combined with abundant lithiophilic sites enable stable Li stripping/plating process even under high current density of 10 mA cm−2. Moreover, X-ray photoelectron spectroscopy and synchrotron X-ray experiments revealed that N-rich framework and CoZn dual active sites can effectively mitigate the undesired cathode crossover, hence significantly minimizing Li corrosion. Therefore, assembled lithium metal cells using various high-energy cathode materials including LiNi0.7Mn0.2Co0.1O2, Li1.2Co0.1Mn0.55Ni0.15O2, and sulfur demonstrate significantly improved cycling stability with high cathode loading.  相似文献   

20.
The Li-rich Li1.3[Ni0.35Mn0.65]O2+x microspheres are firstly prepared and subsequently transferred into the Al2O3-coated Li-rich Li1.3[Ni0.35Mn0.65]O2+x microspheres by a simple deposition method. The as-prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge tests. The results reveal that the Al2O3-coated Li-rich Li1.3[Ni0.35Mn0.65]O2+x sample has a typical α-NaFeO2 layered structure with the existence of Li2MnO3-type integrated component, and the Al2O3 layer is uniformly coated on the surface of the spherical Li-rich Li1.3[Ni0.35Mn0.65]O2+x particles with a thickness of about 4 nm. Importantly, the Al2O3-coated Li-rich sample exhibits obviously improved electrochemical performance compared with the pristine one, especially the 2 wt.% Al2O3-coated sample shows the best electrochemical properties, which delivers an initial discharge capacity of 228 mAh g?1 at a rate of 0.1 C in the voltage of 2.0–4.6 V, and the first coulombic efficiency is up to 90 %. Furthermore, the 2 wt.% Al2O3-coated sample represents excellent cycling stability with capacity retention of 90.9 % at 0.33 C after 100 cycles, much higher than that of the pristine one (62.2 %). Particularly, herein, the typical inferior rate capability of Li-rich layered cathode is apparently improved, and the 2 wt.% Al2O3-coated sample also shows a high rate capability, which can deliver a capacity of 101 mAh g?1 even at 10 C. Besides, the thin Al2O3 layer can reduce the charge transfer resistance and stabilize the surface structure of active material during cycling, which is responsible for the improvement of electrochemical performance of the Li-rich Li1.3[Ni0.35Mn0.65]O2+x .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号