首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The nuclear and magnetic structures of polycrystalline Sr2MnO3.5 have been determined by the Rietveld analysis of neutron powder diffraction data and electron diffraction techniques. The pure Mn3+ single-layered phase crystallizes in the primitive monoclinic space-group P21/c with lattice constants a=6.8524(3) Å b=10.8131(4) Å c=10.8068(4) Å β=113.247(4)°. The oxygen defects form an ordered superstructure within the perovskite block layers consisting of interconnected MnO5 square pyramids, slightly different from those observed for the defect perovskites SrMnO2.5 and Ca2MnO3.5. Magnetic susceptibility studies show a broad transition at ∼280 K, which is attributed to an overall antiferromagnetic ordering of spins, which leads to doubling of the unit cell along [100]. The magnetic unit cell comprises ferromagnetic clusters of four corner-sharing MnO5 pyramids, which are antiferromagnetically aligned to other similar clusters within the perovskite block layers.  相似文献   

2.
The crystal and magnetic structures of the brownmillerite material, Ca2Fe1.039(8)Mn0.962(8)O5 were investigated using powder X-ray and neutron diffraction methods, the latter from 3.8 to 700 K. The compound crystallizes in Pnma space group with unit cell parameters of a=5.3055(5) Å, b=15.322(2) Å, c=5.4587(6) Å at 300 K. The neutron diffraction study revealed the occupancies of Fe3+ and Mn3+ ions in both octahedral and tetrahedral sites and showed some intersite mixing and a small, ∼4%, Fe excess. While bulk magnetization data were inconclusive, variable temperature neutron diffraction measurements showed the magnetic transition temperature to be 407(2) K below which a long range antiferromagnetic ordering of spins occurs with ordering wave vector k=(000). The spins of each ion are coupled antiferromagnetically with the nearest neighbors within the same layer and coupled antiparallel to the closest ions from the neighboring layer. This combination of intra- and inter-layer antiparallel arrangement of spins forms a G-type magnetic structure. The ordered moments on the octahedral and tetrahedral sites at 3.8 K are 3.64(16) and 4.23(16) μB, respectively.  相似文献   

3.
Bulk SrMnOx samples with oxygen contents 2.5?x<2.7 have been studied using a combination of neutron time-of-flight and high-energy high-resolution synchrotron X-ray diffraction measurements along with thermogravimetric analysis. We report the identification and characterization of two new oxygen-vacancy ordered phases, Sr5Mn5O13 (SrMnO2.6-tetragonal P4/m a=8.6127(3) Å, c=3.8102(2) Å) and Sr7Mn7O19 (SrMnO2.714-monoclinic P2/m a=8.6076(4) Å, b=12.1284(4) Å, c=3.8076(2) Å, γ=98.203(2)°). The nuclear and magnetic structures of Sr2Mn2O5 are also reported (SrMnO2.5 nuclear: orthorhombic Pbam, magnetic: Orthorhombic Ay type Pcbam with cM=2c). In the three phases, oxygen-vacancies are ordered in lines running along one of the (100) directions of the parent cubic perovskite system. Oxygen-vacancy ordering allows the charge and orbital ordering of the Mn3+ and Mn4+ cations in the new phases.  相似文献   

4.
A new layered perovskite Sr2Al0.78Mn1.22O5.2 has been synthesized by solid state reaction in a sealed evacuated silica tube. The crystal structure has been determined using electron diffraction, high-resolution electron microscopy, and high-angle annular dark field imaging and refined from X-ray powder diffraction data (space group P4/mmm, a=3.89023(5) Å, c=7.8034(1) Å, RI=0.023, RP=0.015). The structure is characterized by an alternation of MnO2 and (Al0.78Mn0.22)O1.2 layers. Oxygen atoms and vacancies, as well as the Al and Mn atoms in the (Al0.78Mn0.22)O1.2 layers are disordered. The local atomic arrangement in these layers is suggested to consist of short fragments of brownmillerite-type tetrahedral chains of corner-sharing AlO4 tetrahedra interrupted by MnO6 octahedra, at which the chain fragments rotate over 90°. This results in an averaged tetragonal symmetry. This is confirmed by the valence state of Mn measured by EELS. The relationship between the Sr2Al0.78Mn1.22O5.2 tetragonal perovskite and the parent Sr2Al1.07Mn0.93O5 brownmillerite is discussed. Magnetic susceptibility measurements indicate spin glass behavior of Sr2Al0.78Mn1.22O5.2. The lack of long-range magnetic ordering contrasts with Mn-containing brownmillerites and is likely caused by the frustration of interlayer interactions due to presence of the Mn atoms in the (Al0.78Mn0.22)O1.2 layers.  相似文献   

5.
The low-temperature topotactic reduction of La0.33Sr0.67MnO3 with NaH results in the formation of La0.33Sr0.67MnO2.42. A combination of neutron powder and electron diffraction data show that La0.33Sr0.67MnO2.42 adopts a novel anion-vacancy ordered structure with a 6-layer OOTOOT' stacking sequence of the ‘octahedral’ and tetrahedral layers (Pcmb, a=5.5804(1) Å, b=23.4104(7) Å, c=11.2441(3) Å). A significant concentration of anion vacancies at the anion site, which links neighbouring ‘octahedral’ layers means that only 25% of the ‘octahedral’ manganese coordination sites actually have 6-fold MnO6 coordination, the remainder being MnO5 square-based pyramidal sites. The chains of cooperatively twisted apex-linked MnO4 tetrahedra adopt an ordered -L-R-L-R- arrangement within each tetrahedral layer. This is the first published example of a fully refined structure of this type which exhibits such intralayer ordering of the twisted tetrahedral chains. The rationale behind the contrasting structures of La0.33Sr0.67MnO2.42 and other previously reported reduced La1−xSrxMnO3−y phases is discussed.  相似文献   

6.
A new Cd-containing transition metal Zintl phase, Sr11Cd6Sb12, was obtained from a direct element combination reaction using the Sn flux method. Its structure was determined using single-crystal X-ray diffraction methods. It crystallizes in the monoclinic space group C2/m with a=32.903(3) Å, b=4.7666(5) Å, c=12.6057(13) Å, β=109.752(2)°, and Z=2. Sr11Cd6Sb12 has a one-dimensional infinite chain structure consisting of double pentagonal tubes, where Sr2+ cations reside both within two tubes and between the infinite chains of tubes. The anionic framework [Cd6Sb12]22− has features similar to those of Eu10Mn6Sb13. The difference in Eu10Mn6Sb13 is that its double pentagonal tubes are further condensed to form two-dimensional layers.  相似文献   

7.
A new member of the A2MP2O7 diphosphate family, Li2MnP2O7, has been synthesized by solid-state reaction and characterized using single-crystal X-ray diffraction. Li2MnP2O7 crystallizes in the monoclinic space group P21/a (#14) with the cell parameters a=9.9158(6) Å, b=9.8289(6) Å, c=11.1800(7) Å, β=102.466(5)°, Z=8 and V=1063.9(1) Å3. Its mixed framework exhibits an original Mn2O9 unit, built up of one MnO5 trigonal bipyramid sharing one edge with one MnO6 octahedron. These Mn2O9 units are sharing corners with P2O7 diphosphate groups, forming the undulating [Mn4P8O32] layers. The [MnP2O7] 3D framework, resulting from the interconnection of the undulating [Mn4P8O32] layers, exhibits different kinds of intersecting tunnels containing the Li cations.  相似文献   

8.
Effects of magnesium substitution on the magnetic properties of Nd0.7Sr0.3MnO3 have been investigated by neutron powder diffraction and magnetization measurements on polycrystalline samples of composition Nd0.7Sr0.3MnO3, Nd0.6Mg0.1Sr0.3MnO3, Nd0.6Mg0.1Sr0.3Mn0.9Mg0.1O3, and Nd0.6Mg0.1Sr0.3Mn0.8Mg0.2O3. The pristine compound Nd0.7Sr0.3MnO3 is ferromagnetic with a transition temperature occurring at about 210 K. Increasing the Mg-substitution causes weakened ferromagnetic interaction and a great reduction in the magnetic moment of Mn. The Rietveld analyses of the neutron powder diffraction (NPD) data at 1.5 K for the samples with Mg concentration, y=0.0 and 0.1, show ferromagnetic Mn moments of 3.44(4) and 3.14(4) μB, respectively, which order along the [001] direction. Below 20 K the Mn moments of these samples become canted giving an antiferromagnetic component along the [010] direction of about 0.4 μB at 1.5 K. The analyses also show ferromagnetic polarization along [001] of the Nd moments below 50 K, with a magnitude of almost 1 μB at 1.5 K for both samples. In the samples with Mg substitution of 0.2 and 0.3 only short range magnetic order occurs and the magnitude of the ferromagnetic Mn moments is about 1.6 μB at 1.5 K for both samples. Furthermore, the low-temperature NPD patterns show an additional very broad and diffuse feature resulting from short range antiferromagnetic ordering of the Nd moments.  相似文献   

9.
A new perovskite based compound Pb2Mn2O5 has been synthesized using a high pressure high temperature technique. The structure model of Pb2Mn2O5 is proposed based on electron diffraction, high angle annular dark field scanning transmission electron microscopy and high resolution transmission electron microscopy. The compound crystallizes in an orthorhombic unit cell with parameters a=5.736(1) Å≈√2ap, b=3.800(1) Å≈ap, c=21.562(6) Å≈4√2ap (ap—the parameter of the perovskite subcell) and space group Pnma. The Pb2Mn2O5 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110]p(1?01)p crystallographic shear planes. The blocks are connected to each other by chains of edge-sharing MnO5 distorted tetragonal pyramids. The chains of MnO5 pyramids and the MnO6 octahedra of the perovskite blocks delimit six-sided tunnels accommodating double chains of Pb atoms. The tunnels and pyramidal chains adopt two mirror-related configurations (“left” L and “right” R) and layers consisting of chains and tunnels of the same configuration alternate in the structure according to an -L-R-L-R-sequence. The sequence is sometimes locally violated by the appearance of -L-L- or -R-R-fragments. A scheme is proposed with a Jahn-Teller distortion of the MnO6 octahedra with two long and two short bonds lying in the a-c plane, along two perpendicular orientations within this plane, forming a d-type pattern.  相似文献   

10.
A new Os-containing, pillared perovskite, La5Os3MnO16, has been synthesized by solid state reaction in sealed quartz tubes. This extends the crystal chemistry of these materials which had been known only for Mo and Re, previously. The crystal structure has been characterized by X-ray and neutron powder diffraction and is described in space group C-1 with parameters a=7.9648(9) Å; b=8.062(1) Å; c=10.156(2) Å, α=90.25(1)°, β=95.5(1)°; γ=89.95(2)°, for La5Os3MnO16. The compound is isostructural with the corresponding La5Re3MnO16 phase. A very short Os-Os distance of 2.50(1) Å was found in the dimeric pillaring unit, Os2O10, suggestive of a triple bond as demanded by electron counting. Nearly spin only values for the effective moment for Os5+ () and Mn2+ () were derived from magnetic susceptibility data. Evidence for magnetic transitions was seen near ∼180 and 80 K. Neutron diffraction data indicate that Tc is 170(5) K. The magnetic structure of La5Os3MnO16 at 7 K was solved revealing that Os5+ and Mn2+ form ferrimagnetically coupled layers with antiferromagnetic interlayer ordering. The ordered moments are for Mn2+ and for Os5+, which are reduced from the respective spin only values of 5.0 and . The observation of net ferrimagnetic (antiparallel) intraplanar coupling between Os5+(t2g3) and Mn2+(t2g3eg2) is interesting as it appears to contradict the Goodenough-Kanamori rules for 180° superexchange.  相似文献   

11.
Sr3In0.9Co1.1O6, isostructural to Ca3Co2O6, is revealed by the study of the phase relations in the system SrO-InO1.5-CoOx (1000 °C). The structure of Sr3In0.9Co1.1O6 is refined by the combination of powder X-ray and neutron diffraction. Sr3In0.9Co1.1O6 crystallizes in a trigonal lattice with the cell parameters a=b=9.59438(3) Å, c=11.02172(4) Å with the space group R-3c. Its structure possesses 1D (In/Co)O3 chains running along the c-axis constructed by alternating face-sharing CoO6 octahedra and (In0.9Co0.1)O6 trigonal prisms. The co-occupation of In3+ and Co3+ at the trigonal prismatic site is evidenced by elementary analysis and determined by the structure refinement. Sr3In0.9Co1.1O6 is paramagnetic, and the susceptibility is consistent with the occupation of Co3+ at 10% of the trigonal prismatic positions in a high spin state (HS, S=2). The HS Co3+ is well separated by diamagnetic CoO6 octahedra and InO6 trigonal prisms and shows a g factor of 2.0 in the magnetic measurements.  相似文献   

12.
The new Pb5Sb2MnO11 compound was synthesized using a solid-state reaction in an evacuated sealed silica tube at 650°C. The crystal structure was determined ab initio using a combination of X-ray powder diffraction, electron diffraction and high-resolution electron microscopy (a=9.0660(8)Å, b=11.489(1)Å, c=10.9426(9)Å, S.G. Cmcm, RI=0.045, RP=0.059). The Pb5Sb2MnO11 crystal structure represents a new structure type and it can be considered as quasi-one-dimensional, built up of chains running along the c-axis and consisting of alternating Mn+2O7 capped trigonal prisms and Sb2O10 pairs of edge sharing Sb+5O6 octahedra. The chains are joined together by Pb atoms located between the chains. The Pb+2 cations have virtually identical coordination environments with a clear influence of the lone electron pair occupying one vertex of the PbO5E octahedra. Electronic structure calculations and electron localization function distribution analysis were performed to define the nature of the structural peculiarities. Pb5Sb2MnO11 exhibits paramagnetic behavior down to T=5 K with Weiss constant being nearly equal to zero that implies lack of cooperative magnetic interactions.  相似文献   

13.
A new chromium-phosphate has been prepared under hydrothermal conditions for the first time. It crystallizes in the Monoclinic system, space group C2/c, a=17.002(3) Å, b=26.333(5) Å, c=16.017(4) Å, β=96.63 (3)°, V=7123.07(2) Å3 and Z=4. The crystal structure displays a centrosymmetric complex aggregate [Cr9P12O58H12]17−, constructed from the unprecedented enneanucleus chromic core Cr9O10 with peripheral ligations provided by 12 phosphate groups. The sodium ions and water as guests fill in the cavities among the clusters to satisfy the charge balance and keep the structural stability. The magnetic measurement indicates the existence of antiferromagnetic interactions.  相似文献   

14.
The structure of Laves-phase deuteride YFe2D4.2 has been investigated by synchrotron and neutron (ToF) powder diffraction experiments between 60 and 370 K. Below 323 K, YFe2D4.2 crystallizes in a fully ordered, monoclinic structure (s.g. Pc, Z=8, a=5.50663(4), b=11.4823(1), c=9.42919(6) Å, β=122.3314(5)°, V=503.765(3) Å3 at 290 K) containing 4 yttrium, 8 iron and 18 deuterium atoms. Most D-D distances are, within the precision of the diffraction experiment, longer than 2.1 Å; the shortest ones are of 1.96 Å. Seven of eight iron atoms are coordinated by deuterium in a trigonal bipyramid, similar to that in TiFeD1.95−2. The eighth iron atom is coordinated by deuterium in a tetrahedral configuration. The coordination of iron by deuterium, and the iron-deuterium distances point to the importance of the directional bonding between iron and deuterium atoms. The lowering of crystal symmetry due to deuterium ordering occurs at much higher temperature than the magnetic ordering, and is therefore one of the parameters that are at the origin of the magnetic transition at lower temperatures.  相似文献   

15.
The structure of La6Mo8O33 has been determined from a triple pattern powder diffraction analysis. Two high-resolution neutron diffraction patterns collected at 1.594 and 2.398 Å and one X-rays were used. This molybdate crystallizes in a non-centrosymmetric monoclinic space group P21(N°4), Z=2,a=10.7411(3) Å, b=11.9678(3) Å, c=11.7722(3) Å, β=116.062 (1)°. La6Mo8O33 is an unusual ordered defect Scheelite. Hence, it should be described with cation vacancies and an extra oxygen atom following the formula: La62Mo8O32+1. This extra oxygen atom leads to a pyramidal environment, whereas the other molybdenum atoms present tetrahedral environment. A molybdenum tetrahedral is connecting to the pyramid, forming an [Mo2O9] unit.  相似文献   

16.
Single crystals of a new compound of formula MnVSbO6 were grown by slow cooling from a V2O5-B2O33 flux at 900°C. The compound crystallizes in the orthorhombic space group Pbcn (No. 60), with cell parameters (in the Pcnb setting) a=4.6604(3) Å, b=4.9603(3) Å, c=17.1433(9)Å, Z=4. The crystal structure was solved from 1188 independent reflections to Rw=3.20% and goodness-of-fit 1.5 for 44 refined parameters. The structure can be described as a superstructure of the α-PbO2 type with a cation ordering similar to that found in Fe2WO6. Cations occupy octahedral sites in the PbO2-like layers. Zigzag chains of edge-sharing MnO6 octahedra alternate with mixed Sb/V chains following a -Mn-Sb/V-Sb/V- sequence. The magnetic susceptibility of MnVSbO6 follows the Curie-Weiss law down to ca. 15 K, where it orders antiferromagnetically. The bond lengths and Curie constant are consistent with the expected charge distribution Mn2+V5+Sb5+O6.  相似文献   

17.
Two new compounds Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10 have been synthesized in the ternary system: MO-Bi2O3-V2O5 system (M=M2+). The crystal structure of Sr0.5Bi3V2O10 has been determined from single crystal X-ray diffraction data, space group and Z=2, with cell parameters a=7.1453(3) Å, b=7.8921(3) Å, c=9.3297(3) Å, α=106.444(2)°, β=94.088(2)°, γ=112.445(2)°, V=456.72(4) Å3. Ca0.5Bi3V2O10 is isostructural with Sr0.5Bi3V2O10, with, a=7.0810(2) Å, b=7.8447(2) Å, c=9.3607(2) Å, α=106.202(1)°, β=94.572(1)°, γ=112.659(1)°, V=450.38(2) Å3 and its structure has been refined by Rietveld method using powder X-ray data. The crystal structure consists of infinite chains of (Bi2O2) along c-axis formed by linkage of BiO8 and BiO6 polyhedra interconnected by MO8 polyhedra forming 2D layers in ac plane. The vanadate tetrahedra are sandwiched between these layers. Conductivity measurements give a maximum conductivity value of 4.54×10−5 and 3.63×10−5 S cm−1 for Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10, respectively at 725 °C.  相似文献   

18.
Solid-state reaction between SrCO3, Cr2O3 and SrF2 has produced the apatite phase Sr10(CrO4)6F2 and Sr2CrO4 which adopts the K2NiF4-type structure. The reaction outcome was very sensitive to the heating rate with rapid rise times favouring the formation of Sr2CrO4, which has been synthesised at ambient pressure for the first time. Powder X-ray diffraction and electron diffraction confirmed that Sr2CrO4 adopts a body centred tetragonal cell (space group I4/mmm) with lattice parameters a=3.8357(1) Å and c=12.7169(1) Å, while a combination of neutron and X-ray diffraction verified Sr10(CrO4)6F2 is hexagonal (space group P63/m) with lattice parameters a=9.9570(1) Å and c=7.4292(1) Å. X-ray photoelectron spectroscopy and magnetic measurements were used to characterise the oxidation states of chromium contained within these phases.  相似文献   

19.
The investigation of the AgNbO3-Nb2O5 system is carried out using solid-state routes. This investigation allows to confirm the existence of four compounds with structure related to the Na-based homologous. A new form of AgNb3O8 is evidenced and its structure is determined on the basis of single-crystal X-ray diffraction investigations. This compound crystallizes in the orthorhombic system (SG Pbam) with cell parameters a=12.453(4) Å; b=12.416(1) Å; c=3.9700(4) Å. It presents a TTB type host network in which triangular tunnels remain empty, square ones are fully filled with Ag+ and pentagonal ones show mixed occupancy with Ag+ and [NbO]3+ entities. Crystal-chemistry investigations show that despite a complex and more or less disordered structure, no evidence for solid solution domain is observed.  相似文献   

20.
Na2Mn2S3 was oxidatively deintercalated using iodine in acetonitrile to yield Na1.3Mn2S3, with lattice constants nearly identical to that of the reactant. Lithium was then reductively intercalated into the oxidized product to yield Li0.7Na1.3Mn2S3. When heated, this metastable compound decomposed to form a new crystalline compound, LiNaMnS2, along with MnS and residual Na2Mn2S3. Single crystal X-ray diffraction structural analysis of LiNaMnS2 revealed that this compound crystallizes in P-3m1 with cell parameters a=4.0479(6) Å, c=6.7759(14) Å, V=96.15(3) Å3 (Z=1, wR2=0.0367) in the NaLiCdS2 structure-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号