首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel electrochemical biosensor is described for detection of breakpoint cluster region gene and a cellular abl (BCR/ABL) fusion gene in chronic myelogenous leukemia (CML) by using thiolated-hairpin locked nucleic acids (LNA) as the capture probe. The hairpin LNA probe was immobilized on the nanogold (NG)/poly-eriochrome black T (EBT) film-modified glassy carbon electrode (GCE). The immobilized LNA probe could selectively hybridize with its target DNA on LNA/NG/EBT/GCE surface. The immobilization and hybridization of the LNA probe were characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The hybridization of the immobilized LNA probe with the target DNA was detected by differential pulse voltammetry with the electroactive methylene blue as an indicator. The results indicated this new method has excellent specificity for single-base mismatch and complementary after hybridization, and a high sensitivity. This novel electrochemical biosensor has been used for assay of PCR real sample with satisfactory result.  相似文献   

2.
基于慢性粒细胞白血病中BCR/ABL融合基因的碱基序列,设计了一种新型发夹结构锁核酸(locked nucleic acids, LNA)探针,把LNA探针通过Au-s键固定在金电极表面构建了特异的生物传感器.LNA探针与目标链DNA杂交,以自行合成的苯甲酸二聚铜配合物([Cu2(C7H5O2)4(C2H6O)2], 简称[Cu(R)2]2+)为杂交指示剂,应用差示脉冲伏安法进行检测,表现出良好的响应信号.该新型锁核酸传感器能较好的区分完全互补链DNA、单碱基错配链DNA.对互补链DNA检测的线性范围为1.0×10-8~1.0×10-6 mol•L-1,检出限为2.0×10-9 mol•L-1.  相似文献   

3.
In the present study, we investigated the properties of PNA and LNA capture probes in the development of an electrochemical hybridization assay. Streptavidin-coated paramagnetic micro-beads were used as a solid phase to immobilize biotinylated DNA, PNA and LNA capture probes, respectively. The target sequence was then recognized via hybridization with the capture probe. After labeling the biotinylated hybrid with a streptavidin–enzyme conjugate, the electrochemical detection of the enzymatic product was performed onto the surface of a disposable electrode. The assay was applied to the analytical detection of biotinylated DNA as well as RNA sequences. Detection limits, calculated considering the slope of the linear portion of the calibration curve in the range 0–2 nM were found to be 152, 118 and 91 pM, coupled with a reproducibility of the analysis equal to 5, 9 and 6%, calculated as RSD%, for DNA, PNA and LNA probes respectively, using the DNA target. In the case of the RNA target, the detection limits were found to be 51, 60 and 78 pM for DNA, PNA and LNA probes respectively.  相似文献   

4.
《Electroanalysis》2006,18(9):873-881
In this paper, we present an impedance‐based DNA biosensor using thionine intercalation to amplify DNA hybridization signal. Beacon single‐stranded DNA (ssDNA) probe and mercaptoacetic acid were self‐assembled onto a Au electrode by forming Au? S bonds. These beacon ssDNAs were hybridized with the complementary sequences around the loop structure. Then thionine was intercalated into the double‐stranded DNA (dsDNA) immobilized on the Au electrode surface. Due to the neutralization of the negative charges of dsDNA by the intercalated thionine, the electronic transfer resistance (Ret) of the DNA modified Au electrode was significantly diminished. Herein, the decreased value of Ret resulted from the thionine intercalating into dsDNA was employed as the hybridization signal. SDS was used to reduce the unspecific adsorption between ssDNA and thionine. Several experimental conditions, including the surface coverage of ssDNA probe on Au electrode, the hybridization temperature and time were all optimized. Moreover, the hybridization reactions of the unstructured linear ssDNA probe and the structured beacon ssDNA probe with their complementary sequences were compared in this work. The sensitivity of the presented DNA biosensor highlighted that the intercalation of thionine into dsDNA was an efficient approach to amplify the hybridization signal using impedance detection technique. Additionally, in this DNA biosensing protocol, beacon ssDNA has a good ability to distinguish target DNA sequences. This results in a higher specificity than using traditional unstructured DNA probe.  相似文献   

5.
In this study, a sandwich‐type electrochemical enzyme‐based LNA‐modified DNA biosensor was developed to detect relative gene in chronic Myelogenous Leukemia first. This biosensor is based on a ‘sandwich’ detection strategy, which involves a pair of probes (a capture probe immobilized at the electrode surface and a reporter probe labeled biotin as an affinity tag for avidin‐HRP) modified LNA. Since biotin can be connected with avidin‐HRP, this biosensor offers an enzymatically amplified electrochemical current signal for the detection of target DNA. This new pattern exhibits high sensitivity and selectivity, and this biosensor has been used for an assay of PCR real sample with satisfactory result.  相似文献   

6.
In most of the currently developed electrochemical DNA hybridization sensors short single-stranded probe DNA is immobilized on an electrode and both the hybridization and detection steps are carried out on the electrode surface. Here we use a new technology in which DNA hybridization is performed on commercially available magnetic beads and detection on solid electrodes. Paramagnetic Dynabeads Oligo(dT)25 (DBT) with covalently bound (dT)25 probe are used for the hybridization with target DNA containing adenine stretches. Target DNA is modified with osmium tetroxide,2,2′-bipyridine (Os,bipy) and the immunogenic DNA-Os,bipy adduct is determined by the enzyme-linked immunoassay with electrochemical detection. Electroinactive 1-naphthyl phosphate is used as a substrate and the electroactive product (1-naphthol) is measured on the carbon electrodes. Alternatively Os,bipy-modified target DNA can be determined directly by measuring the osmium signal on the pyrolytic graphite electrode (PGE). A comparison between determinations of the 67-mer oligodeoxynucleotide on carbon electrodes using (a) the guanine oxidation signal, (b) direct determination of the DNA-Os,bipy adduct and (c) its electrochemical immunoassay showed immunoassay to be the most sensitive method. In combination with DBT, the DNA hybridization of long target deoxyoligonucleotides (such as 67- and 97-mers) and a DNA PCR product (226-base pairs) have been detected by immunoassay at high sensitivity and specificity.  相似文献   

7.
A novel approach to construct an electrochemical DNA sensor based on immobilization of a 25 base single-stranded probe, specific to E. coli lac Z gene, onto a gold disk electrode is described. The capture probe is covalently attached using a self-assembled monolayer of 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP) and mercaptohexanol (MCH) as spacer. Hybridization of the immobilized probe with the target DNA at the electrode surface was monitored by square wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. Variables involved in the sensor performance, such as the DTSP concentration in the modification solution, the self-assembled monolayers (SAM) formation time, the DNA probe drying time atop the electrode surface and the amount of probe immobilized, were optimized.

A good stability of the single- and double-stranded oligonucleotides immobilized on the DTSP-modified electrode was demonstrated, and a target DNA detection limit of 45 nM was achieved without signal amplification. Hybridization specificity was checked with non-complementary and mismatch oligonucleotides. A single-base mismatch oligonucleotide gave a hybridization response only 7 ± 3%, higher than the signal obtained for the capture probe before hybridization. The possibility of reusing the electrochemical genosensor was also tested.  相似文献   


8.
We describe a supersandwich type of electrochemical DNA biosensor based on the use of a glassy carbon electrode (GCE) modified with reduced graphene oxide (rGO) sheets that are decorated with gold nanoparticles (Au NPs). Thiolated capture DNA (probe DNA) was covalently linked to the Au NPs on the surface of the modified GCE via formation of Au-S bonds. In presence of target DNA, its 3′ terminus hybridizes with capture probe and the 5′ terminus hybridizes with signal probe labeled with Methylene Blue (MB). On increasing the concentration of target DNA, hybridization between signal probe and target DNA results in the formation of three different DNA sequences that form a supersandwich structure. The signal intensity of MB improves distinctly with increasing concentrations of target DNA in the sample solution. The assembling process on the surface of the electrode was studied by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used to monitor the hybridization event by measuring the changes in the peak current for MB. Under optimal conditions, the peak currents in DPV for MB linearly increase with the logarithm of target DNA concentration in the range from 0.1 μM to1.0 fM, with a detection limit of 0.35 fM (at an signal/noise ratio of 3). This biosensor exhibits good selectivity, even over single-base mismatched target DNA.
Figure
We designed a sensitive supersandwich electrochemical DNA biosensor based on rGO sheets decorated with Au NPs. SEM and electrochemical methods were employed to investigate the assembly process of the biosensor. The biosensor exhibits high sensitivity and good specificity.  相似文献   

9.
This communication reports on a new electrochemical method to detect the hybridization specificity by using host–guest recognition technique. A hairpin DNA with dabcyl-labeled at its 3′ and NH2 group at 5′ terminal was combined with CdS nanoparticle to construct a double-labeled probe (DLP), which could selectively hybridize with its target DNA in homogeneous solution. A β-CD modified Poly(N-acetylaniline) glassy carbon electrode was used for capturing the dabcyl label in DLP. When without binding with target DNA, the DLP kept its stem-loop structure which shielded the dabcyl molecule due to the loop of the hairpin DNA and CdS nanoparticle blocking dabcyl enter into the cavity of these β-CD molecules on the electrode. However, in present of complementary sequence, the target-binding DLP was incorporated into double stranded DNA, causing the DLP’s loop-stem structure opened and then the dabcyl was easily captured by the β-CD modified electrode. During electrochemical measurement, the signal from the dissolved Cd2+ was used for target DNA quantitative analysis.  相似文献   

10.
We herein constructed a sensor that converts target DNA hybridization‐induced conformational transformation of the probe DNA to electrochemical response based on host‐guest recognition and nanoparticle label. In the sensor, the hairpin DNA terminal‐labeled with 4‐((4‐(dimethylamino)phenyl)azo)benzoic acid (dabcyl) and thiol group was immobilized on Au electrode surface as the probe DNA by Au‐S bond, and the CdS nanoparticles surface‐modified with β‐cyclodextrins (CdS‐CDs) were employed as electrochemical signal provider and host‐guest recognition element. Initially, the probe DNA immobilized on electrode kept the stem‐loop configuration, which shielded dabcyl from docking with the CdS‐CDs in solution due to the steric effect. After target hybridization, the probe DNA underwent a significant conformational change, which forced dabcyl away from the electrode. As a result, formerly‐shielded dabcyl became accessible to host‐guest recognition between β‐cyclodextrin (β‐CD) and dabcyl, thus the target hybridization event could be sensitively transduced to electrochemical signal provided by CdS‐CDs. This host‐guest recognition‐based electrochemical sensor has been able to detect as low as picomolar DNA target with excellent differentiation ability for even single mismatch.  相似文献   

11.
以室温固相合成法制备纳米ZnO,通过壳聚糖(CHIT)的成膜效应将纳米ZnO固定在玻碳电极(GCE)表面,制得的ZnO/CHIT/GCE电极成为DNA固定和杂交的良好平台。DNA的固定和杂交通过电化学交流阻抗进行表征。以电化学交流阻抗免标记法检测目标DNA,固定于电极表面的DNA探针与目标DNA杂交后使电极表面的电子传递电阻增大,以此作为检测信号可以高灵敏度地测定目标DNA。电化学阻抗谱检测人类免疫缺陷病毒(HIV)基因片段的线性范围为2.0×10-11~2.0×10-6mol/L,检出限为2.0×10-12mol/L。  相似文献   

12.
A two-probe tandem nucleic acid hybridization assay for detection of Staphylococcus aureus is presented. It is based on a europium(III) complex as a marker that has a long fluorescence lifetime, high quantum yield and can be easily conjugated to an oligonucleotide signaling probe. The amino-modified capture probe was associated with the signaling probe to form a two-probe tandem DNA pattern that is complementary to the target DNA. The method was optimized in terms of hybridization temperature, hybridization time and washing time. This resulted in good specificity and sensitivity when detecting such bacteria in food samples.
Figure
A europium complex as a long fluorescent lifetime marker was conjugated to an oligonucleotide. The amino-modified capture probe was associated with the signaling probe to form a two-probe tandem DNA pattern that is complementary to the target DNA. The results are shown that this method has good specificity and sensitivity.  相似文献   

13.
In electrochemical DNA hybridization sensors generally a single-stranded probe DNA was immobilized at the electrode followed by hybridization with the target DNA and electrochemical detection of the hybridization event at the same electrode. In this type of experiments nonspecific adsorption of DNA at the electrode caused serious difficulties especially in the case of the analysis of long target DNAs. We propose a new technology in which DNA is hybridized at a surface H and the hybridization is detected at the detection electrode (DE). This technology significantly extends the choice of hybridization surfaces and DEs. Here we use paramagnetic Dynabeads Oligo(dT)(25) (DBT) as a transportable reactive surface H and a hanging mercury drop electrode as DE. We describe a label-free detection of DNA and RNA (selectively captured at DBT) based on the determination of adenines (at ppb levels, by cathodic stripping voltammetry) released from the nucleic acids by acid treatment. The DNA and RNA nonspecific adsorption at DBT is negligible, making thus possible to detect the hybridization event with a great specificity and sensitivity. Specific detection of the hybridization of polyribonucleotides, mRNA, oligodeoxynucleotides, and a DNA PCR product (226 base pairs) is demonstrated. New possibilities in the development of the DNA hybridization sensors opened by the proposed technology, including utilization of catalytic signals in nucleic acid determination at mercury (e.g. signals of osmium complexes covalently bound to DNA) and solid DEs (e.g. using enzyme-labeled antibodies against chemically modified DNAs) are discussed.  相似文献   

14.
An electrochemical DNA biosensor was developed that is based on a gold electrode modified with a nanocomposite membrane made from an ionic liquid, ZnO nanoparticles and chitosan. A single-stranded DNA probe was immobilized on this electrode. Acridine orange was used as the hybridization probe for monitoring the hybridization of the target DNA. The biosensor was capable of detecting target DNA in the concentration range from 1.0?×?10?C14 to 1.8?×?10?C4?mol?L-1, with a detection limit of 1.0?×?10?C15?mol?L-1. The approach towards constructing a DNA biosensor allows studies on the hybridization even with crude DNA fragments and also to analyze sample obtained from real samples. The results show that the DNA biosensor has the potential for sensitive detection of a specific sequence of the Trichoderma harzianum gene and provides a quick, sensitive and convenient method for the study of microorganisms.
Figure
Suggested interaction mechanism of modified electrode (IL/ZnO/CHIT/AuE) between immobilization and hybridization  相似文献   

15.
A label-free electrochemical detection protocol for DNA hybridization is reported for the first time by using a gold electrode (AuE). The oxidation signal of guanine was monitored at +0.73 V by using square wave voltammetry (SWV) on self-assembled l-cysteine monolayer (SAM) modified AuE. The electrochemical determination of hybridization between an inosine substituted capture probe and native target DNA was also accomplished. 6-mer adenine probe was covalently attached to SAM via its amino link at 5 end. Then, 6-mer thymine-tag of the capture probe was hybridized with the adenine probe, thus left the rest of the oligonucleotide available for hybridization with the target. The dependence of the guanine signal upon the concentration of the target was observed. Probe modified AuE was also challenged with non-complementary and mismatch containing oligonucletides. Label-free detection of hybridization on AuE is greatly advantageous over the existing carbon and mercury electrode materials, because of its potential applicability to microfabrication techniques. Performance characteristics of the genosensor are described, along with future prospects.  相似文献   

16.
We functionalized aligned carbon nanotubes (ACNTs) electrode with a new kind of β-cyclodextrin (β-CD) derivative through diazotization reaction. The resulting β-CD/ACNTs electrode was used to detect DNA hybridization in homogeneous solution based on host–guest recognition technology. In the sensing protocol, one special DNA probe was designed with a stem-loop structure and both ends modified, which we called dually labeled DNA probe (DLP). One end of the DLP was labeled with dabcyl as guest molecule for β-CD/ACNTs electrode capture, and the other end was labeled with a CdS nanoparticle as an electrochemical tag to indicate the occurrence of DNA hybridization. In the absence of the target DNA sequence, the DLP maintains its hairpin structure in solution phase and would not be captured and detected by the β-CD/ACNTs electrode. In the presence of the complementary target sequence, the conformational structure of the DLP was altered and a double-stranded DNA (dsDNA) molecule was formed by the hybridization of DLP and complementary DNA sequence. Consequently, the dsDNA was captured by the β-CD/ACNTs electrode owing to guest–host recognition between β-CD and dabcyl. The electrochemical signal from the CdS nanoparticle–dsDNA/β-CD/ACNTs was then measured. Under optimized detection conditions, the proposed method showed high sensitivity and selectivity with a detection limit of 5.0 × 10−13 M for complementary DNA sequence.  相似文献   

17.
基于急性早幼粒细胞白血病(APL)中PML/RARα融合基因的碱基序列,设计了新型的锁核酸(LNA)修饰寡核苷酸作为捕获探针和信号探针,研究出一种基于"三明治"传感模式的电化学生物传感器对PML/RARα融合相关基因进行检测.靶序列分别与捕获探针和信号探针杂交后形成"三明治"结构.将修饰电极置于含有底物3,3′,5,5′-四甲基联苯胺(TMB)和过氧化氢的测定溶液中,用计时电流法检测靶序列.结果表明,该传感器可定量识别和检测溶液中人工合成的短链APL PML/RARα融合基因片段.经过条件优化,杂交前后电流值与靶标链浓度在1.0×10~(-12) ~2.5×10~(-11) mol/L范围内呈良好的线性关系,检出限为8.5×10~(-13) mol/L.该方法简单、特异性好,有望用于实际样品的检测.  相似文献   

18.
A selective DNA sensing with zeptomole detection level is developed based on coulometric measurement of gold nanoparticle (AuNPs)-mediated electron transfer (ET) across a self-assembled monolayer on the gold electrode. After immobilization of a thiolated hairpin-structured DNA probe, an alkanethiol monolayer was self-assembled on the resultant electrode to block [Fe(CN)6 ]-3-/4in a solution from accessing the electrode. In the presence of DNA target, hybridization between the DNA probe and the DNA target breaks the stem duplex of DNA probe. Consequently, stem moiety at the 3′-end of the DNA probes was removed from the electrode surface and made available for hybridization with the reporter DNA-AuNPs conjugates (reporter DNA-AuNPs). The thiolated reporter DNA matches the stem moiety at the 3′-end of the DNA probe. AuNPs were then enlarged by immersing the electrode in a growth solution containing HAuCl 4 and H2O2 after the reporter DNA-AuNPs bound onto the electrode surface. The enlarged AuNPs on the electrode restored the ET between the electrode and the [Fe(CN)6]3 -/4- , as a result, amplified signals were achieved for DNA target detection using the coulometric measurement of Fe(CN)6 3- electro-reduction by prolonging the electrolysis time. The quantities of ET on the DNA sensor increased with the increase in DNA target concentration through a linear range of 3.0 fM to 1.0 pM when electrolysis time was set to 300 s, and the detection limit was 1.0 fM. Correspondingly, thousands of DNA (zeptomole) copies were detected in 10L samples. Furthermore, the DNA sensor showed excellent differentiation ability for single-base mismatch.  相似文献   

19.
Motivated by the potential of electrochemical techniques to analyze hybridization events fast and in a simple and cost‐effective way we present here a detection system allowing a parallel electrochemical DNA analysis. For this purpose different probe DNA strands have been immobilized on one electrode. By the use of two different target DNA sequences, both marked with the redox active methylene blue, we can show that hybridization with the complementary probe sh“NA strands can occur without steric hindrance. Each target has been recognized down to 3nM with a very high specificity of the sensor. In addition, we can detect two different ssDNA targets labeled with different redox active molecules, methylene blue and ferrocene, on one sensor surface simultaneously.  相似文献   

20.
The impedimetric sensing of DNA hybridization on polyaniline/polyacrylate (PANI/PAA)-modified boron-doped diamond (BDD) electrode has been investigated. An ultrathin film of PANI-PAA copolymer was electropolymerized onto the diamond surfaces to provide carboxylic groups for tethering to DNA sensing probes. The electrochemical impedance and the intrinsic electroactivity of the polymer-diamond interface were analyzed after the hybridization reaction with target and non-target DNA. The impedance measurement shows changes in the impedance modulus as well as electron-transfer resistance at the stage of probe DNA immobilization (single-strand), as well as after hybridization with target DNA (double-strand). DNA hybridization increases the capacitance of the polymer-DNA layer and reduces the overall impedance of the DNA-polymer-diamond stack significantly. The polymer-modified BDD electrode shows no detectable nonspecific adsorption, with good selectivity between the complementary DNA targets and the one-base mismatch targets. The detection limit was measured to be 2 x 10(-8) M at 1000 Hz. Denaturing test on the hybridized probe and subsequent reuse of the probe indicates chemical robustness of the sensor. Our results suggest that electropolymerization followed by the immobilization of biomolecules is a simple and effective way of creating a functional biomolecular scaffold on the diamond surface. In addition, label-free electrochemical impedance method can provide direct and noninvasive sensing of DNA hybridization on BDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号