首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以室温固相合成法制备纳米ZnO,通过壳聚糖(CHIT)的成膜效应将纳米ZnO固定在玻碳电极(GCE)表面,制得的ZnO/CHIT/GCE电极成为DNA固定和杂交的良好平台。DNA的固定和杂交通过电化学交流阻抗进行表征。以电化学交流阻抗免标记法检测目标DNA,固定于电极表面的DNA探针与目标DNA杂交后使电极表面的电子传递电阻增大,以此作为检测信号可以高灵敏度地测定目标DNA。电化学阻抗谱检测人类免疫缺陷病毒(HIV)基因片段的线性范围为2.0×10-11~2.0×10-6mol/L,检出限为2.0×10-12mol/L。  相似文献   

2.
Song MJ  Kim JH  Lee SK  Lim DS 《Analytical sciences》2011,27(10):985-989
An electrochemical biosensor was developed using boron-doped diamond (BDD) as an electrode material. To enhance the electrical performance of the electrode, the BDD electrode was decorated with Pt-nanoparticles (Pt-NPs) by electrochemical deposition. Their morphology according to the applied potentials for the synthesis of Pt-NPs was characterized by SEM. To identify the performance of the electrode modified with Pt-NPs, glucose detection was used as a sample sensing process, and the results were compared with those of a gold electrode and a bare BDD electrode. The electrochemical characteristics of the modified electrode were examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The BDD electrode with the Pt-NPs showed higher sensitivity and a lower detection limit than the Au electrode and BDD electrode. The proposed biosensor based on the Pt-NPs decorated BDD electrode showed high sensitivity, a low detection limit, fast direct electron transfer and good stability.  相似文献   

3.
以室温固相合成法制备纳米MnO2,通过壳聚糖(CHIT)的成膜效应将纳米MnO2固定在玻碳电极表面。DNA在MnO2/CHIT膜上的固定和杂交通过循环伏安和电化学交流阻抗进行表征。以电化学阻抗免标记法检测目标DNA,固定于电极表面的DNA探针与目标DNA杂交后使电极表面的电子传递电阻增大,以此作为检测信号可以高灵敏度地测定目标DNA。电化学阻抗谱检测大肠杆菌基因片段的线性范围为2.0×10^-11 ~2.0×10^-6mol/L,检出限为1.0×10^-12mol/L。  相似文献   

4.
A novel electrochemical biosensor is described for detection of breakpoint cluster region gene and a cellular abl (BCR/ABL) fusion gene in chronic myelogenous leukemia (CML) by using thiolated-hairpin locked nucleic acids (LNA) as the capture probe. The hairpin LNA probe was immobilized on the nanogold (NG)/poly-eriochrome black T (EBT) film-modified glassy carbon electrode (GCE). The immobilized LNA probe could selectively hybridize with its target DNA on LNA/NG/EBT/GCE surface. The immobilization and hybridization of the LNA probe were characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The hybridization of the immobilized LNA probe with the target DNA was detected by differential pulse voltammetry with the electroactive methylene blue as an indicator. The results indicated this new method has excellent specificity for single-base mismatch and complementary after hybridization, and a high sensitivity. This novel electrochemical biosensor has been used for assay of PCR real sample with satisfactory result.  相似文献   

5.
Development of an electrochemical DNA biosensor based on a human interleukine-2 (IL-2) gene probe, using a pencil graphite electrode (PGE) as transducer and methylene blue (MB) as electroactive label is described. The sensor relies on the immobilization of a 20-mer single stranded oligonucleotide probe (hIL-2) related to the IL-2 gene on the electrode. The hybridization between the probe and its complementary sequence (chIL-2) as the target was studied by square wave voltammetry (SWV) of MB accumulated on the PGE. In this approach the extent of hybridization is evaluated on the basis of the difference between SWV signals of MB accumulated on the probe-PGE and MB accumulated on the probe-target-PGE. Some hybridization experiments with non-complementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the target. Some experimental variables affecting the performance of the biosensor including: polishing of PGE, its electrochemical activation conditions (i.e., activation potential and activation time) and probe immobilization conditions on the electrodes (i.e., immobilization potential and time) were investigated and the optimum values of 1.80 V and 300 s for PGE activation, and −0.5 V and 400 s for the probe immobilization on the electrode were suggested.  相似文献   

6.
蔡军  艾仕云  殷焕顺  时伟杰 《化学学报》2009,67(19):2227-2232
以铂电极上聚合的2,6-吡啶二甲酸(PDC)膜组装G5.0树状高分子(PAMAM)固定ssDNA探针, 制备了一种新型的DNA电化学生物传感器. 用[Fe(CN)6]3-/4-作氧化还原指示剂, 以电化学交流阻抗和循环伏安技术对探针ssDNA的固定和杂交进行了表征. 实验表明, 当ssDNA在复合膜上固定及与其互补序列杂交后, 电极表面的传递电阻(Ret)依次增大. 因此, 可以利用Ret的明显差异, 以此固定探针的修饰电极, 对互补序列DNA进行无标记交流阻抗检测. 基于该生物传感器结合交流阻抗技术对禽病毒基因进行检测, 在优化实验条件下, 靶基因ssDNA-2在2.0×10-11~1.0×10-8 mol•L-1线性范围内, 其浓度与电极表面的电子传递电阻(Ret)之间呈良好的线性关系, 检测限为3.6×10-12 mol•L-1. 表明该方法为病毒灵敏地检测提供了一个有益的传感平台.  相似文献   

7.
A label-free and sensitive electrochemical biosensing strategy for a hepatocellular carcinoma biomarker of miRNA-122 has been proposed based on hybridization induced ion-barrier effect on the electroactive sensing interface.First,a bifunctional electroactive electrode with the nanocomposite of Prussian blue(PB) and gold nanoparticles(AuNPs) was prepared through a two-step electrodeposition process.The PB endows the electrode excellent K~+-dependent voltammetric signal and the AuNPs act as the matrix for the self-assembly immobilization of the thiolated probe DNA.Upon specific hybridization of probe DNA with the target miRNA-122,the formed double duplex induced the ion-barrier effect,which blocked the diffusion of the K~+ from the bulk solution to the electrode surface.As a result,the voltammetric signal of the PB on the electrode was surpressed,and thus the target miRNA-122 was monitored.The sensing assay showed that the miRNA-122 could be analyzed in the concentration range from 0.1 fmol/L to 1.0 nmol/L,with a detection limit of 0.021 fmol/L.The practical applicability of the biosensor was also verified by the spiking serum assay.  相似文献   

8.
This paper describes specific electrochemical enterobacteriaceae lac Z gene DNA sensors based on immobilization of a thiolated 25 base single stranded probe onto disposable screen printed gold electrodes (gold SPEs). Two configurations have been evaluated. In the first one, the capture probe was attached to the electrode surface through its ? SH moiety, while mercaptohexanol (MCH) was used as spacer for the displacement of nonspecifically adsorbed oligonucleotide molecules. The hybridization event between the probe and target DNA sequences was detected at ?0.20 V by square‐wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. The second genosensor configuration involved modification of gold high temperature SPEs with a 3,3′‐dithiodipropionic acid di(N‐succinimidyl ester) (DTSP) self‐assembled monolayer (SAM). Moreover, 2‐aminoethanol was used as blocking agent, and further modification with avidin allowed binding of the biotinylated enterobacteriaceae lac Z gene DNA probe. An enzyme amplified detection scheme was applied, based on the coupling of streptavidin‐peroxidase to the biotinylated complementary target, after the hybridization process, and immobilization of tetrathiafulvalene (TTF) as redox mediator atop the modified electrode. The amperometric response obtained at ?0.15 V after the addition of hydrogen peroxide was used to detect the hybridization process. Experimental variables concerning sensors composition and electrochemical transduction were evaluated in both cases. A better precision and reproducibility in the fabrication process, as well as a higher sensitivity were achieved using the biotinylated probe‐based sensor configuration. A limit of detection of 0.002 ng/μL was obtained without any preconcentration step.  相似文献   

9.
A nonlabeling electrochemical detection method for analyzing the polymerase-chain-reaction-amplified sequence-specific p16 INK4A gene, in which the basis for the covalent immobilization of deoxyribonucleic acid (DNA) probe is described, has been developed. The self-assembly process was based on the covalent coupling of glutaraldehyde (GA) as an arm molecule onto an amino-functional surface. The p16 INK4A gene was used as the model target for the methylation detection of early cancer diagnosis. An amino-modified DNA probe was successfully assembled on the GA-coupling surface through the formation of Schiff base under potential control. The hybridization of amino-modified DNA probes with the target was investigated by means of electrochemical measurements, including cyclic voltammetry and square wave voltammetry. Furthermore, the functions of GA coupling for sequence-specific detection were compared with those obtained based on mercaptopropionic acid. Hybridization experiments indicated that the covalent coupling of GA was suitable for the immobilization of DNA probe and was sensitive to the electrochemical detection of single-base mismatches of label-free DNA targets in hybridization. Moreover, reported probe-modified surfaces exhibited excellent stability, and the hybridization reactions were found to be completely reversible and highly specific for recognition in subsequent hybridization processes. The strategy provided the potential for taking full advantage of existing modified electrode technologies and was verified in microarray technology, which could be applied as a useful and powerful tool in electrochemical biosensor and microarray technology.  相似文献   

10.
Electrochemistry and electrochemical surface plasmon resonance (SPR) spectroscopy have been applied to study the electrochemical deposition and the redox transition of poly(4-nitro-1,2-phenylenediamine) (P4NoPD) on gold disk. It was shown that SPR can be the signal transducer for the different redox states of P4NoPD. Using a model biomolecular system, involving streptavidin, biotinylated DNA, and its complementary target DNA, it was found that the presence of nitro groups in P4NoPD allows the biorecognition events to be modulated by voltages. There is minimal nonspecific binding of biomolecules on oxidized (+0.2 V) or as-prepared P4NoPD, and binding occurs more significantly on the reduced P4NoPD (-0.2 to -0.6 V) with the presence of amine groups. The electrochemical deposition of P4NoPD film was also conducted on boron-doped diamond (BDD) electrode. The stability of the reduced P4NoPD film on gold and BDD was comparatively evaluated by electrochemical impedance spectroscopy (EIS). The result showed that BDD allows the electrochemical reduction of the P4NoPD film at wider cathodic limits than gold.  相似文献   

11.
《Electroanalysis》2005,17(23):2182-2189
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid‐modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well‐defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single‐stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the specific sequence related to the target bar gene with the dynamic range comprised between 1.0×10?7 mol/L to 1.0×10?4 mol/L. A detection limit of 2.25×10?8 mol/L of oligonucleotides can be estimated.  相似文献   

12.
A novel approach to construct an electrochemical DNA sensor based on immobilization of a 25 base single-stranded probe, specific to E. coli lac Z gene, onto a gold disk electrode is described. The capture probe is covalently attached using a self-assembled monolayer of 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP) and mercaptohexanol (MCH) as spacer. Hybridization of the immobilized probe with the target DNA at the electrode surface was monitored by square wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. Variables involved in the sensor performance, such as the DTSP concentration in the modification solution, the self-assembled monolayers (SAM) formation time, the DNA probe drying time atop the electrode surface and the amount of probe immobilized, were optimized.

A good stability of the single- and double-stranded oligonucleotides immobilized on the DTSP-modified electrode was demonstrated, and a target DNA detection limit of 45 nM was achieved without signal amplification. Hybridization specificity was checked with non-complementary and mismatch oligonucleotides. A single-base mismatch oligonucleotide gave a hybridization response only 7 ± 3%, higher than the signal obtained for the capture probe before hybridization. The possibility of reusing the electrochemical genosensor was also tested.  相似文献   


13.
利用硼掺杂金刚石(BDD)电极通过循环伏安法和微分脉冲伏安法研究了阿昔洛韦在0.10 mol/L磷酸盐缓冲溶液(pH 7.4)中的电化学行为及其与DNA的相互作用.与玻碳电极相比,阿昔洛韦在BDD电极上的循环伏安曲线在1.17 V处的氧化峰电流更大,背景电流较低.根据峰电位随溶液pH值和扫描速率的变化趋势考察了阿昔洛韦...  相似文献   

14.
The human interleukine‐2 gene (hIL‐2) is detected with a label‐free DNA hybridization biosensor using a non‐inosine substituted probe. The sensor relies on the immobilization of a 20‐mer antisense single strand oligonucleotide (chIL‐2) related to the human interleukine‐2 gene on the pencil graphite electrode (PGE) as a probe. The guanine oxidation signal was monitored using anodic differential pulse voltammetry (ADPV). The electrochemical pretreatment of the polished PGE at 1.80 V for 5 min is suggested. Then, 5 min immobilization at 0.50 V was found as the optimum condition for immobilization of the probe. The electrochemical detection of hybridization between chIL‐2 and hIL‐2 as a target was accomplished. The selectivity of the biosensor was studied using noncomplementary oligonucleotides. Diagnostic performance of the biosensor is described and the detection limit is found 36 pg/μL.  相似文献   

15.
Development of electrochemical DNA hybridization biosensors based on carbon paste electrode (CPE) and gold nanoparticle modified carbon paste electrode (NGMCPE) as transducers and ethyl green (EG) as a new electroactive label is described. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were applied for the investigation and comparison of bare CPE and NGMCPE surfaces. Our voltammetric and spectroscopic studies showed gold nanoparticles are enable to facilitate electron transfer between the accumulated label on DNA probe modified electrode and electrode surface and enhance the electrical signals and lead to an improved detection limit. The immobilization of a 15‐mer single strand oligonucleotide probe on the working electrodes and hybridization event between the probe and its complementary sequence as a target were investigated by differential pulse voltammetry (DPV) responses of the EG accumulated on the electrodes. The effects of some experimental variables on the performance of the biosensors were investigated and optimum conditions were suggested. The selectivity of the biosensors was studied using some non‐complementary oligonucleotides. Finally the detection limits were calculated as 1.35×10?10 mol/L and 5.16×10?11 mol/L on the CPE and NEGCPE, respectively. In addition, the biosensors exhibited a good selectivity, reproducibility and stability for the determination of DNA sequences.  相似文献   

16.
《Analytical letters》2012,45(18):3046-3057
Abstract

Nano-MnO2/chitosan composite film modified glassy carbon electrode (MnO2/CHIT/GCE) was fabricated and a DNA probe was immobilized on the electrode surface. The immobilization and hybridization events of DNA were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The EIS was applied to the label-free detection of the target DNA. The human immunodeficiency virus (HIV) gene fragment was successfully detected by this DNA electrochemical sensor. The dynamic detection range was from 2.0 × 10?11 to 2.0 × 10?6 mol/L, with a detection limit of 1.0 × 10?12 mol/L.  相似文献   

17.
A two-potential electrochemical method is applied to study DNA immobilization, by the simultaneous characterization of capture probe DNA self-assembled monolayers and hybridized target DNA molecules on a given gold electrode surface. Capture probe and target DNA strands are labeled with ferrocenes composed of differing chemical environments, to permit their simultaneous, yet independent signaling at different formal potentials, so that their respective signals may be de-convoluted and assessed for relative surface concentration. Some special attributes of the nondestructive two-potential electrochemical probe described herein include surface sensitivity, chemical and orientation specificity, and the ability to provide a real-time, in situ probe that does not need any wash steps for stringency. This electrochemical probe is applied to study the kinetics, surface architecture, coverage, and orientation of DNA during its immobilization on gold. On the basis of our results primarily from this electrochemical probe, and validated by N(1s) core-level X-ray photoelectron spectra, we judge significant DNA deposition within 5 min of incubation in the deposition solutions, with the capture probe DNA anchored predominantly via the thiol end, even at low coverages. Surface coverage for DNA immobilization plateaus within 30 min of incubation time to approximately 2 x 10(13) molecules/cm(2) and the immobilization kinetics as determined from this electrochemical method are consistent with surface re-organization as the rate-determining step.  相似文献   

18.
Na Zhou 《Talanta》2009,77(3):1021-183
A polyaniline nanofibers (PANnano)/carbon paste electrode (CPE) was prepared via dopping PANnano in the carbon paste. The nanogold (Aunano) and carbon nanotubes (CNT) composite nanoparticles were bound on the surface of the PANnano/CPE. The immobilization and hybridization of the DNA probe on the Aunano-CNT/PANnano films were investigated with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) using methylene blue (MB) as indicator, and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/4− as redox probe. The voltammetric peak currents of MB increased dramatically owing to the immobilization of the probe DNA on the Aunano-CNT/PANnano films, and then decreased obviously owing to the hybridization of the DNA probe with the complementary single-stranded DNA (cDNA). The electron transfer resistance (Ret) of the electrode surface increased after the immobilization of the probe DNA on the Aunano-CNT/PANnano films and rose further after the hybridization of the probe DNA. The remarkable difference between the Ret value at the DNA-immobilized electrode and that at the hybridized electrode could be used for the label-free EIS detection of the target DNA. The loading of the DNA probe on Aunano-CNT/PANnano films was greatly enhanced and the sensitivity for the target DNA detection was markedly improved. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene and the polymerase chain reaction (PCR) amplification of nopaline synthase (NOS) gene from transgenically modified beans were determined with this label-free EIS DNA detection method. The dynamic range for detecting the PAT gene sequence was from 1.0 × 10−12 mol/L to 1.0 × 10−6 mol/L with a detection limit of 5.6 × 10−13 mol/L.  相似文献   

19.
A novel base-mismatched oligonucleotide assay method based on label-free electrochemical biosensor was developed, in which the L-cysteine (Cys)-dihydroartemisinin (DHA) complex was used as a new electroactive indicator. In DNA sensor, Cys-DHA complex was initially formed on electrode surface by cathodic scanning, and target oligonucleotide was conjugated with Cys-terminated DHA indicator through electrostatic interaction under optimal pH. The subsequent sequence assay was responsive to hybridization recognition, which target oligonucleotide was captured by the surface-anchored DNA/Cys-DHA probe. The electrochemical signals of biosensor before and after hybridization were compared basing the measurements of semi-derivative linear scan voltammetry (SDLSV) and electrochemical impedance spectroscopy (EIS). On the basis of signal amplification of electroactive indicator and specific recognition of DNA probe, five target oligonucleotides with different mismatched bases were assayed, and a detection limit reached 0.3 nM. Furthermore, atomic force microscopy (AFM) was used to visually characterize specific recognition spots of biosensor at nanoscale. This study demonstrated a new electroactive molecule-based, biomolecule-involved electroactive indicator and its application in recognition and detection of complementary and base-mismatched oligonucleotide.  相似文献   

20.
韩苗苗  王萍  席守民 《分析测试学报》2020,39(12):1466-1472
该文以DNA四面体纳米结构探针(TSP)为捕获探针,将辣根过氧化物酶标记的IgG抗体结合在纳米金颗粒表面(AuNPs-IgG-HRP)作为信号分子,构建了一种新型DNA甲基化电化学传感器。利用一步热变性法组装成TSP后,通过Au—S键固定在修饰纳米金颗粒的金电极表面,经过靶标DNA杂交、5-甲基胞嘧啶(5-mc)抗体及AuNPs-IgG-HRP结合后,用差分脉冲伏安法(DPV)进行检测。采用循环伏安法(CV)和电化学阻抗谱(EIS)对修饰电极的构建过程进行电化学表征。探究了杂交时间、5-mc抗体浓度、IgG-HRP加入体积、氢醌(HQ)和过氧化氢(H2O2)浓度对传感器的影响。在最佳条件下,该传感器对甲基化DNA的线性响应范围为1.0×10-15~1.0×10-10 mol/L,检出限(S/N=3)为4.4×10-16 mol/L。该传感器具有良好的选择性和稳定性,为DNA甲基化检测提供了新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号