首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Escherichia coli (E. coli) and other bacteria are propelled through water by several helical flagella, which are rotated by motors embedded at random points on the cell wall. Depending on the handedness and rotation sense, the motion of the flagella induces a flow field that causes them to wrap around each other and form a bundle. Our objective is to understand and model the mechanics of this process. Full-scale flagella are 10 m in length, 20 nm in diameter, and turn at a rate of 100 Hz. To accurately simulate bundling at a more easily observable scale, we built a scale model in which 20-cm-long helices are rotated in 100,000 cp silicone oil (Poly-di-methyl-siloxane). The highly viscous oil ensures an appropriately low Reynolds number. We developed a macro-scale particle image velocimetry (PIV) system to measure the full-field velocity distribution for rotating rigid helices and rotating flexible helices. In the latter case, the helices were made from epoxy-filled plastic tubing to give approximately the same ratio of elastic to viscous stresses as in the full-scale flagella. Comparison between PIV measurements and slender-body calculations shows good agreement for the case of rigid helices. For the flexible helices, we find that the flow field generated by a bundle in the steady state is well approximated by the flow generated by a single rigid helix with twice the filament radius.  相似文献   

3.
We consider the two-dimensional motion of several non-homogeneous rigid bodies immersed in an incompressible non-homogeneous viscous fluid. The fluid, and the rigid bodies are contained in a fixed open bounded set of ?2. The motion of the fluid is governed by the Navier-Stokes equations for incompressible fluids and the standard conservation laws of linear and angular momentum rule the dynamics of the rigid bodies. The time variation of the fluid domain (due to the motion of the rigid bodies) is not known a priori, so we deal with a free boundary value problem. The main novelty here is thedemonstration of the global existence of weak solutions for this problem. More precisely, the global character of the solutions we obtain is due to the fact that we do not need any assumption concerning the lack of collisions between several rigid bodies or between a rigid body and the boundary. We give estimates of the velocity of the bodies when their mutual distance or the distance to the boundary tends to zero.  相似文献   

4.
The distribution of forces on the surface of complex, deforming geometries is an invaluable output of flow simulations. One particular example of such geometries involves self‐propelled swimmers. Surface forces can provide significant information about the flow field sensed by the swimmers and are difficult to obtain experimentally. At the same time, simulations of flow around complex, deforming shapes can be computationally prohibitive when body‐fitted grids are used. Alternatively, such simulations may use penalization techniques. Penalization methods rely on simple Cartesian grids to discretize the governing equations, which are enhanced by a penalty term to account for the boundary conditions. They have been shown to provide a robust estimation of mean quantities, such as drag and propulsion velocity, but the computation of surface force distribution remains a challenge. We present a method for determining flow‐induced forces on the surface of both rigid and deforming bodies, in simulations using remeshed vortex methods and Brinkman penalization. The pressure field is recovered from the velocity by solving a Poisson's equation using the Green's function approach, augmented with a fast multipole expansion and a tree‐code algorithm. The viscous forces are determined by evaluating the strain‐rate tensor on the surface of deforming bodies, and on a “lifted” surface in simulations involving rigid objects. We present results for benchmark flows demonstrating that we can obtain an accurate distribution of flow‐induced surface forces. The capabilities of our method are demonstrated using simulations of self‐propelled swimmers, where we obtain the pressure and shear distribution on their deforming surfaces.  相似文献   

5.
IntroductionThesqueezeflowofafluidbetweentwodisksorspheresisofrelevancetomanyapplications,includingtheformingofpolymermaterials ,squeezeflowrheometerandlubricationofbearings.Thesqueezeflowinteractionbetweensolidparticlesisalsofundamentaltothecomplexrhe…  相似文献   

6.
A simple and effective immersed boundary method using volume of body (VOB) function is implemented on unstructured Cartesian meshes. The flow solver is a second‐order accurate implicit pressure‐correction method for the incompressible Navier–Stokes equations. The domain inside the immersed body is viewed as being occupied by the same fluid as outside with a prescribed divergence‐free velocity field. Under this view a fluid–body interface is similar to a fluid–fluid interface encountered in the volume of fluid (VOF) method for the two‐fluid flow problems. The body can thus be identified by the VOB function similar to the VOF function. In fluid–body interface cells the velocity is obtained by a volume‐averaged mixture of body and fluid velocities. The pressure inside the immersed body satisfies the same pressure Poisson equation as outside. To enhance stability and convergence, multigrid methods are developed to solve the difference equations for both pressure and velocity. Various steady and unsteady flows with stationary and moving bodies are computed to validate and to demonstrate the capability of the current method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The method of force sources is used to consider the planar problem of the motion of a circular cylinder in a viscous electroconductive medium with a magnetic field. The conventional and magnetic Reynolds numbers are assumed to be small. Expressions are obtained for the hydrodynamic reaction forces of the medium, acting on the moving cylinder. It is shown that as a result of the flow anisotropy in the medium, caused by the magnetic field, in addition to the resistance forces on bodies moving at an angle to the field, there are deflecting forces perpendicular to the velocity vector. The velocity field disturbances at great distances from the moving cylinder are determined.The problems of viscous electroconductive flow about solid bodies in the presence of a magnetic field constitute one of the divisions of magnetohydrodynamics. Motion of an electroconductive medium in a magnetic field gives rise to inductive electromagnetic fields and currents which interact with the velocity and pressure hydrodynamic fields in the medium [1, 2]. Under conditions of sufficiently strong interaction, the number of independent flow similarity parameters in MHD is considerably greater than in conventional hydrodynamics. This circumstance complicates the theoretical analysis of MHD flow about bodies, and therefore we must limit ourselves to consideration of individual particular flow cases.Here we consider the linear problem of the motion of an infinite circular cylinder in a viscous incompressible medium with finite electroconductivity located in a uniform magnetic field.There are many studies devoted to the flow of a viscous electroconductive medium with a magnetic field about solid bodies (see, for example, [3–5]). Because of this, some of the results obtained here include previously known results, which will be indicated below. In contrast to the cited studies, the examination is made by the method of force sources, suggested in [6]. This method permits obtaining integral equations for the distribution of the forces acting on the surface of the moving body. Their solution is obtained for small Reynolds and Hartmann numbers. Then the nature of the velocity disturbances at great distances from the body are determined. These results are compared with conventional viscous flow about a cylinder in the Oseen approximation.  相似文献   

8.
The control of complex, unsteady flows is a pacing technology for advances in fluid mechanics. Recently, optimal control theory has become popular as a means of predicting best case controls that can guide the design of practical flow control systems. However, most of the prior work in this area has focused on incompressible flow which precludes many of the important physical flow phenomena that must be controlled in practice including the coupling of fluid dynamics, acoustics, and heat transfer. This paper presents the formulation and numerical solution of a class of optimal boundary control problems governed by the unsteady two‐dimensional compressible Navier–Stokes equations. Fundamental issues including the choice of the control space and the associated regularization term in the objective function, as well as issues in the gradient computation via the adjoint equation method are discussed. Numerical results are presented for a model problem consisting of two counter‐rotating viscous vortices above an infinite wall which, due to the self‐induced velocity field, propagate downward and interact with the wall. The wall boundary control is the temporal and spatial distribution of wall‐normal velocity. Optimal controls for objective functions that target kinetic energy, heat transfer, and wall shear stress are presented along with the influence of control regularization for each case. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Four examples of self-similar flows of a viscous fluid are considered: separated flow over an expanding plate immersed in an unbounded unsteady viscous flow, the evolution of the velocity field induced by a vortex-source, the flow near an unsteadily moving permeable flat plate, and the flow near an unsteadily rotating disc. For the first example, a numerical solution is constructed. For the next two examples, an analytical solution is found, while the solution of the last problem is reduced to a system of ordinary differential equations.  相似文献   

10.
This article discusses the application of a Lagrange multiplier‐based fictitious domain method to the numerical simulation of incompressible viscous flow modeled by the Navier–Stokes equations around moving rigid bodies; the rigid body motions are due to hydrodynamical forces and gravity. The solution method combines finite element approximations, time discretization by operator splitting and conjugate gradient algorithms for the solution of the linearly constrained quadratic minimization problems coming from the splitting method. The study concludes with the presentation of numerical results concerning four test problems, namely the simulation of an incompressible viscous flow around a NACA0012 airfoil with a fixed center but free to rotate, then the sedimentation of 200 and 1008 cylinders in a two‐dimensional channel, and finally the sedimentation of two spherical balls in a rectangular cylinder. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Bio‐inspired mechanics of locomotion generally consist of the interaction of flexible structures with the surrounding fluid to generate propulsive forces. In this work, we extend, for the first time, the viscous vortex particle method (VVPM) to continuously deforming two‐dimensional bodies. The VVPM is a high‐fidelity Navier–Stokes computational method that captures the fluid motion through evolution of vorticity‐bearing computational particles. The kinematics of the deforming body surface are accounted for via a surface integral in the Biot–Savart velocity. The spurious slip velocity in each time step is removed by computing an equivalent vortex sheet and allowing it to flux to adjacent particles; hence, no‐slip boundary conditions are enforced. Particles of both uniform and variable size are utilized, and their relative merits are considered. The placement of this method in the larger class of immersed boundary methods is explored. Validation of the method is carried out on the problem of a periodically deforming circular cylinder immersed in a stagnant fluid, for which an analytical solution exists when the deformations are small. We show that the computed vorticity and velocity of this motion are both in excellent agreement with the analytical solution. Finally, we explore the fluid dynamics of a simple fish‐like shape undergoing undulatory motion when immersed in a uniform free stream, to demonstrate the application of the method to investigations of biomorphic locomotion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In the present paper, a general integral equation is presented to calculate the forces exerted on a two-dimensional (2-D) body of arbitrary shape immersed in unsteady, incompressible flows. By finding the general solutions of a set of Laplace equations with particular boundary conditions, the equation can be simplified to produce a simplified formula for calculating the forces. The simplified formula consists of three parts, representing contributions from different physical phenomena: added mass force and/or inertial force in inviscid flow, the force caused by the deformation of fluid and viscosity and the force caused by the convection of fluid with nonzero circulation. It can be applied to any 2-D arbitrary body in viscous or inviscid, steady or unsteady incompressible flow. As the formula excludes either temporal derivatives of velocity or spatial derivatives of vorticity in the flow field, the numerical errors contained in the numerical solution of velocity and vorticity fields will not be magnified, and therefore the resulting force calculated is more accurate. Most importantly, the formula presents an alternative method for obtaining the added mass of a 2-D body of arbitrary shape accelerating in a fluid. For bodies of simple shape, such as a circle, ellipse and plate, the added masses predicted using the present method are in agreement with that obtained by conventional methods. For bodies of complex shape, the present method only requires the calculation of the first two coefficients of the conformal transformation and cross-sectional area.  相似文献   

13.
The solution of Stokes' equations for a rotating axisymmetric body which possesses reflection symmetry about a planar interface between two infinite immiscible quiescent viscous fluids is shown to be independent of the viscosities of the fluids and identical with the solution when the fluids have the same viscosity. The result is generalized to a rotating axisymmetric system of bodies which possesses reflection symmetry about each interface of a plane stratified system of fluids. An analogous result for two-fluid systems with a nonplanar static interface is also derived. The effect on torque reduction produced by the presence of a second fluid layer adjacent to a rotating axisymmetric body is considered and explicit calculations are given for the case of a sphere. A proof of uniqueness for unbounded multi-fluid Stokes' flow is given and the asymptotic far field structure of the velocity field is determined for axisymmetric flow caused by the rotation of axisymmetric bodies.  相似文献   

14.
For simulating freely moving problems, conventional immersed boundary‐lattice Boltzmann methods encounter two major difficulties of an extremely large flow domain and the incompressible limit. To remove these two difficulties, this work proposes an immersed boundary‐lattice Boltzmann flux solver (IB‐LBFS) in the arbitrary Lagragian–Eulerian (ALE) coordinates and establishes a dynamic similarity theory. In the ALE‐based IB‐LBFS, the flow filed is obtained by using the LBFS on a moving Cartesian mesh, and the no‐slip boundary condition is implemented by using the boundary condition‐enforced immersed boundary method. The velocity of the Cartesian mesh is set the same as the translational velocity of the freely moving object so that there is no relative motion between the plate center and the mesh. This enables the ALE‐based IB‐LBFS to study flows with a freely moving object in a large open flow domain. By normalizing the governing equations for the flow domain and the motion of rigid body, six non‐dimensional parameters are derived and maintained to be the same in both physical systems and the lattice Boltzmann framework. This similarity algorithm enables the lattice Boltzmann equation‐based solver to study a general freely moving problem within the incompressible limit. The proposed solver and dynamic similarity theory have been successfully validated by simulating the flow around an in‐line oscillating cylinder, single particle sedimentation, and flows with a freely falling plate. The obtained results agree well with both numerical and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, an immersed boundary method for simulating inviscid compressible flows governed by Euler equations is presented. All the mesh points are classified as interior computed points, immersed boundary points (interior points closest to the solid boundary), and exterior points that are blanked out of computation. The flow variables at an immersed boundary point are determined via the approximate form of solution in the direction normal to the wall boundary. The normal velocity is evaluated by applying the no‐penetration boundary condition, and therefore, the influence of solid wall in the inviscid flow is taken into account. The pressure is computed with the local simplified momentum equation, and the density and the tangential velocity are evaluated by using the constant‐entropy relation and the constant‐total‐enthalpy relation, respectively. With a local coordinate system, the present method has been extended easily to the three‐dimensional case. The present work is the first endeavor to extend the idea of hybrid Cartesian/immersed boundary approach to compressible inviscid flows. The tedious task of handling multi‐valued points can be eliminated, and the overshoot resulting from the extrapolation for the evaluation of flow variables at exterior points can also be avoided. In order to validate the present method, inviscid compressible flows over fixed and moving bodies have been simulated. All the obtained numerical results show good agreement with available data in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The paper's focus is the calculation of unsteady incompressible 2D flows past airfoils. In the framework of the primitive variable Navier–Stokes equations, the initial and boundary conditions must be assigned so as to be compatible, to assure the correct prediction of the flow evolution. This requirement, typical of all incompressible flows, viscous or inviscid, is often violated when modelling the flow past immersed bodies impulsively started from rest. Its fulfillment can however be restored by means of a procedure enforcing compatibility, consisting in a pre‐processing of the initial velocity field, here described in detail. Numerical solutions for an impulsively started multiple airfoil have been obtained using a finite element incremental projection method. The spatial discretization chosen for the velocity and pressure are of different order to satisfy the inf–sup condition and obtain a smooth pressure field. Results are provided to illustrate the effect of employing or not the compatibility procedure, and are found in good agreement with those obtained with a non‐primitive variable solver. In addition, we introduce a post‐processing procedure to evaluate an alternative pressure field which is found to be more accurate than the one resulting from the projection method. This is achieved by considering an appropriate ‘unsplit’ version of the momentum equation, where the velocity solution of the projection method is substituted. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a diffuse-interface immersed boundary method (IBM) is proposed for simulation of compressible viscous flows with stationary and moving boundaries. In the method, the solution of flow field and the implementation of boundary conditions are decoupled into two steps by applying the fractional step technique, ie, the predictor step and the corrector step. Firstly, in the predictor step, the intermediate flow field is resolved by a recently developed gas kinetic flux solver (GKFS) without consideration of the solid boundary. The GKFS is a finite volume approach that solves the Navier-Stokes equations for the flow variables at cell centers. In GKFS, the inviscid and viscous fluxes are evaluated as a single entity by reconstructing the local solution of continuous Boltzmann equation. Secondly, in the corrector step, the intermediate flow field is corrected by the present diffuse-interface IBM. During this process, the velocity field is firstly corrected by the implicit boundary condition–enforced IBM so that the no-slip boundary condition can be accurately satisfied. After that, the density correction is made by an iterative approach with the help of the continuity equation. Finally, the correction of the temperature field is made in the same way as that of the velocity field. Good agreements between the present simulations and the reference data in literature demonstrate the reliability of the proposed method.  相似文献   

18.
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A discontinuous Galerkin method for the solution of the immiscible and incompressible two‐phase flow problem based on the nonsymmetric interior penalty method is presented. Therefore, the incompressible Navier–Stokes equation is solved for a domain decomposed into two subdomains with different values of viscosity and density as well as a singular surface tension force. On the basis of a piecewise linear approximation of the interface, meshes for both phases are cut out of a structured mesh. The discontinuous finite elements are defined on the resulting Cartesian cut‐cell mesh and may therefore approximate the discontinuities of the pressure and the velocity derivatives across the interface with high accuracy. As the mesh resolves the interface, regularization of the density and viscosity jumps across the interface is not required. This preserves the local conservation property of the velocity field even in the vicinity of the interface and constitutes a significant advantage compared with standard methods that require regularization of these discontinuities and cannot represent the jumps and kinks in pressure and velocity. A powerful subtessellation algorithm is incorporated to allow the usage of standard time integrators (such as Crank–Nicholson) on the time‐dependent mesh. The presented discretization is applicable to both the two‐dimensional and three‐dimensional cases. The performance of our approach is demonstrated by application to a two‐dimensional benchmark problem, allowing for a thorough comparison with other numerical methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes a new immersed boundary (IB) method for solving fluid flow problems in the presence of rigid objects which are not represented by the mesh. Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Important benefit would be reached if we are able to solve the flow without the need of generating a mesh that fits the shape of the immersed objects. This work presents a finite element IB method using a discretization covering the entire domain of interest, including the volume occupied by immersed objects, and which produces solutions of the flow satisfying accurately the boundary conditions at the surface of immersed bodies. In other words the finite element solution represents accurately the presence of immersed bodies while the mesh does not. This is done by including additional degrees of freedom on interface cut elements which are then eliminated at element level. The boundary of immersed objects is defined using a level set function. Solutions are shown for various flow problems and the accuracy of the present approach is measured with respect to solutions obtained on body‐fitted meshes. Copyright © 2010 Crown in the right of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号