首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
动网格生成技术及非定常计算方法进展综述   总被引:17,自引:1,他引:16  
对应用于飞行器非定常运动的数值计算方法(包括动态网格技术和相应的数值离散格式)进行了综述.根据网格拓扑结构的不同,重点论述了基于结构网格的非定常计算方法和基于非结构/混合网格的非定常计算方法,比较了各种方法的优缺点.在基于结构网格的非定常计算方法中,重点介绍了刚性运动网格技术、超限插值动态网格技术、重叠动网格技术、滑移动网格技术等动态结构网格生成方法,同时介绍了惯性系和非惯性系下的控制方程,讨论了非定常时间离散方法、动网格计算的几何守恒律等问题.在基于非结构/混合网格的非定常计算方法中,重点介绍了重叠非结构动网格技术、重构非结构动网格技术、变形非结构动网格技术以及变形/重构耦合动态混合网格技术等方法,以及相应的计算格式,包括非定常时间离散、几何守恒律计算方法、可压缩和不可压缩非定常流动的计算方法、各种加速收敛技术等.在介绍国内外进展的同时,介绍了作者在动态混合网格生成技术和相应的非定常方法方面的研究与应用工作.  相似文献   

2.
The local domain‐free discretization method is extended in this work to simulate fluid–structure interaction problems, the class of which is exemplified by the self‐propelled anguilliform swimming of deforming bodies in a fluid medium. Given the deformation of the fish body in its own reference frame, the translational and rotational motions of the body governed by Newton's Law are solved together with the surrounding flow field governed by Navier–Stokes equations. When the body is deforming and moving, no mesh regeneration is required in the computation. The loose coupling strategy is employed to simulate the fluid–structure interaction involved in the self‐propelled swimming. The local domain‐free discretization method and an efficient algorithm for classifying the Eulerian mesh points are described in brief. To validate the fluid–structure interaction solver, we simulate the ‘lock‐in’ phenomena associated with the vortex‐induced vibrations of an elastically mounted cylinder. Finally, we demonstrate applications of the method to two‐dimensional and three‐dimensional anguilliform‐swimming fish. The kinematics and dynamics associated with the center of mass are shown and the rotational movement is also presented via the angular position of the body axis. The wake structure is visualized in terms of vorticity contours. All the obtained numerical results show good agreement with available data in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We propose a new approach for reconstructing velocity boundary conditions in sharp-inerface immersed boundary (IB) methods based on the moving least squares (MLS) interpolation method. The MLS is employed to not only reconstruct velocity boundary conditions but also to calculate the pressure and velocity gradients in the vicinity of the immersed body, which are required in fluid structure interaction problems to obtain the force exerted by the fluid on the structure. To extend the method to arbitrarily complex geometries with nonconvex shaped boundaries, the visibility method is combined with the MLS method. The performance of the proposed curvilinear IB MLS (CURVIB-MLS) is demonstrated by systematic grid-refinement studies for two- and three-dimensional tests and compared with the standard CURVIB method employing standard wall-normal interpolation for reconstructing boundary conditions. The test problems are flow in a lid-driven cavity with a sphere, uniform flow over a sphere, flow on a NACA0018 airfoil at incidence, and vortex-induced vibration of an elastically-mounted cylinder. We show that the CURVIB-MLS formulation yields a method that is easier to implement in complex geometries and exhibits higher accuracy and rate of convergence relative to the standard CURVIB method. The MLS approach is also shown to dramatically improve the accuracy of calculating the pressure and viscous forces imparted by the flow on the body and improve the overall accuracy of FSI simulations. Finally, the CURVIB-MLS approach is able to qualitatively capture on relatively coarse grids important features of complex separated flows that the standard CURVIB method is able to capture only on finer grids.  相似文献   

4.
The coupling between the equations governing the free‐surface flows, the six degrees of freedom non‐linear rigid body dynamics, the linear elasticity equations for mesh‐moving and the cables has resulted in a fluid‐structure interaction technology capable of simulating mooring forces on floating objects. The finite element solution strategy is based on a combination approach derived from fixed‐mesh and moving‐mesh techniques. Here, the free‐surface flow simulations are based on the Navier–Stokes equations written for two incompressible fluids where the impact of one fluid on the other one is extremely small. An interface function with two distinct values is used to locate the position of the free‐surface. The stabilized finite element formulations are written and integrated in an arbitrary Lagrangian–Eulerian domain. This allows us to handle the motion of the time dependent geometries. Forces and momentums exerted on the floating object by both water and hawsers are calculated and used to update the position of the floating object in time. In the mesh moving scheme, we assume that the computational domain is made of elastic materials. The linear elasticity equations are solved to obtain the displacements for each computational node. The non‐linear rigid body dynamics equations are coupled with the governing equations of fluid flow and are solved simultaneously to update the position of the floating object. The numerical examples includes a 3D simulation of water waves impacting on a moored floating box and a model boat and simulation of floating object under water constrained with a cable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Bio‐inspired mechanics of locomotion generally consist of the interaction of flexible structures with the surrounding fluid to generate propulsive forces. In this work, we extend, for the first time, the viscous vortex particle method (VVPM) to continuously deforming two‐dimensional bodies. The VVPM is a high‐fidelity Navier–Stokes computational method that captures the fluid motion through evolution of vorticity‐bearing computational particles. The kinematics of the deforming body surface are accounted for via a surface integral in the Biot–Savart velocity. The spurious slip velocity in each time step is removed by computing an equivalent vortex sheet and allowing it to flux to adjacent particles; hence, no‐slip boundary conditions are enforced. Particles of both uniform and variable size are utilized, and their relative merits are considered. The placement of this method in the larger class of immersed boundary methods is explored. Validation of the method is carried out on the problem of a periodically deforming circular cylinder immersed in a stagnant fluid, for which an analytical solution exists when the deformations are small. We show that the computed vorticity and velocity of this motion are both in excellent agreement with the analytical solution. Finally, we explore the fluid dynamics of a simple fish‐like shape undergoing undulatory motion when immersed in a uniform free stream, to demonstrate the application of the method to investigations of biomorphic locomotion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A series of 2D numerical simulations was performed in order to follow various features in the penetration mechanics of deforming long rods. In particular, we were interested in the threshold velocity which marks the transition from rigid to deforming rod and the resulting depths of penetration around this transition velocity. We simulated various cases in which we varied the yield strengths of the rod and the target, as well as their densities and the nose shape of the rod. With the results of these simulations we constructed a rather simple model which accounts for the threshold velocity from rigid to deforming rod behavior. This model’s predictions are in good agreement with both our simulations and with experimental data for various rods and targets.  相似文献   

7.
There have been a few recent numerical implementations of the stress‐jump condition at the interface of conjugate flows, which couple the governing equations for flows in the porous and homogenous fluid domains. These previous demonstration cases were for two‐dimensional, planar flows with simple geometries, for example, flow over a porous layer or flow through a porous plug. The present study implements the interfacial stress‐jump condition for a non‐planar flow with three velocity components, which is more realistic in terms of practical flow applications. The steady, laminar, Newtonian flow in a stirred micro‐bioreactor with a porous scaffold inside was investigated. It is shown how to implement the interfacial jump condition on the radial, axial, and swirling velocity components. To avoid a full three‐dimensional simulation, the flow is assumed to be independent of the azimuthal direction, which makes it an axisymmetric flow with a swirling velocity. The present interface treatment is suitable for non‐flat surfaces, which is achieved by applying the finite volume method based on body‐fitted and multi‐block grids. The numerical simulations show that a vortex breakdown bubble, attached to the free surface, occurs above a certain Reynolds number. The presence of the porous scaffold delays the onset of vortex breakdown and confines it to a region above the scaffold. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, a penalization method is discussed in the context of vortex methods for incompressible flows around complex geometries. In particular, we illustrate the method in two cases: the flow around a rotating blade for Reynolds numbers 1000 and 10,000 and the flow past a semi‐circular body consisting of a porous layer surrounding a rigid body at Reynolds numbers 550 and 3000. In the latter example, the results are interpreted in terms of control strategy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, a computational fluid dynamics algorithm is presented for simulations of complex unsteady flows around rigid moving bodies using an unstructured overset-grid method. For this purpose, a highly automated, three-dimensional, tetrahedral, unstructured overset-grid method is developed with one-cell-width overlapping zone in order to model the arbitrary geometries for steady and unsteady flow simulations. A method has been described to obtain the inter-grid boundaries of the one-cell-wide overlapping zone shared by a background grid and a minor grid. In the overset-grid methodology, vector intersection algorithm and bounding box techniques have been utilised. The mesh refinement and overset-scheme conservation studies proved the accuracy and efficiency of the method developed here. The applications of the developed algorithms were also performed through simulations that included complex internal flows around a flow-control butterfly valve as well as flows in an internal combustion engine with a moving piston. Lastly, validations with experimental data were conducted for both steady and unsteady flows around rigid bodies with relative motions.  相似文献   

11.
Analytic study of 2D and 3D grid motion using modified Laplacian   总被引:1,自引:0,他引:1  
The modified Laplacian has been used to move unstructured grids in response to changes in the surface grid for a variety of grid movement applications including store separation, aero‐elastic wing deformation and free surface flow simulations. However, the use of the modified Laplacian can result in elements with negative areas/volumes, because it has no inherent mechanism to prevent inversion of elements. In this paper, the use of a modified Laplacian is studied analytically for a two‐dimensional problem of deforming the inner circle of two concentric circles and for a three‐dimensional problem of deforming the inner sphere of two concentric spheres. By analysing the exact solution for this problem, the amount of translation and deformation of the inner circle that maintains a valid mesh is determined. A general grid movement theorem is presented which determines analytically the maximum allowable deformation before an invalid mesh results. Under certain circumstances, the inner circle and sphere can be expanded until it reaches the outer circle or sphere, while remaining a valid grid, and the inner circle and sphere can be rotated by an extreme amount before failure of the mesh occurs. By choosing the exponent to the modified Laplacian appropriately, extreme deformations for single frequency deformations is possible, although for practical applications where the grid movement has multiple frequencies, choosing the optimal exponent for the modified Laplacian may not be practical or provide much improvement. For grid movement simulations involving rigid body translation and rotation or uniform expansion, the modified Laplacian can yield excellent results, and the optimum choice of the modified Laplacian can be analytically determined for these types of motions, but when there are multiple frequencies in the deformation, the modified Laplacian does not allow much deformation before an invalid grid results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A new method for computing the fluid flow in complex geometries using highly non‐smooth and non‐orthogonal staggered grid is presented. In a context of the SIMPLE algorithm, pressure and physical tangential velocity components are used as dependent variables in momentum equations. To reduce the sensitivity of the curvature terms in response to coordinate line orientation change, these terms are exclusively computed using Cartesian velocity components in momentum equations. The method is then used to solve some fairly complicated 2‐D and 3‐D flow field using highly non‐smooth grids. The accuracy of results on rough grids (with sharp grid line orientation change and non‐uniformity) was found to be high and the agreement with previous experimental and numerical results was quite good. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes implicit Runge–Kutta (IRK) time integrators to improve the accuracy of a front‐tracking finite‐element method for viscous free‐surface flow predictions. In the front‐tracking approach, the modeling equations must be solved on a moving domain, which is usually performed using an arbitrary Lagrangian–Eulerian (ALE) frame of reference. One of the main difficulties associated with the ALE formulation is related to the accuracy of the time integration procedure. Indeed, most formulations reported in the literature are limited to second‐order accurate time integrators at best. In this paper, we present a finite‐element ALE formulation in which a consistent evaluation of the mesh velocity and its divergence guarantees satisfaction of the discrete geometrical conservation law. More importantly, it also ensures that the high‐order fixed mesh temporal accuracy of time integrators is preserved on deforming grids. It is combined with the use of a family of L‐stable IRK time integrators for the incompressible Navier–Stokes equations to yield high‐order time‐accurate free‐surface simulations. This is demonstrated in the paper using the method of manufactured solution in space and time as recommended in Verification and Validation. In particular, we report up to fifth‐order accuracy in time. The proposed free‐surface front‐tracking approach is then validated against cases of practical interest such as sloshing in a tank, solitary waves propagation, and coupled interaction between a wave and a submerged cylinder. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A coupled ghost fluid/two‐phase level set method to simulate air/water turbulent flow for complex geometries using curvilinear body‐fitted grids is presented. The proposed method is intended to treat ship hydrodynamics problems. The original level set method for moving interface flows was based on Heaviside functions to smooth all fluid properties across the interface. We call this the Heaviside function method (HFM). The HFM requires fine grids across the interface. The ghost fluid method (GFM) has been designed to explicitly enforce the interfacial jump conditions, but the implementation of the jump conditions in curvilinear grids is intricate. To overcome these difficulties a coupled GFM/HFM method was developed in which approximate jump conditions are derived for piezometric pressure and velocity and pressure gradients based on exact continuous velocity and stress and jump in momentum conditions with the jump in density maintained but continuity of the molecular and turbulent viscosities imposed. The implementation of the ghost points is such that no duplication of memory storage is necessary. The level set method is adopted to locate the air/water interface, and a fast marching method was implemented in curvilinear grids to reinitialize the level set function. Validations are performed for three tests: super‐ and sub‐critical flow without wave breaking and an impulsive plunging wave breaking over 2D submerged bumps, and the flow around surface combatant model DTMB 5512. Comparisons are made against experimental data, HFM and single‐phase level set computations. The proposed method performed very well and shows great potential to treat complicated turbulent flows related to ship flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In this work, we propose a formulation to evaluate aerodynamic forces for flow solutions based on Cartesian grids, penalisation and level set functions. The formulation enables the evaluation of forces on closed bodies moving at different velocities. The use of Cartesian grids bypasses the meshing issues, and penalisation is an efficient alternative to explicitly impose boundary conditions so that the body fitted meshes can be avoided. Penalisation enables ice shedding simulations that take into account ice piece effects on the flow. Level set functions describe the geometry in a non-parametric way so that geometrical and topological changes resulting from physics, and particularly shed ice pieces, are straightforward to follow. The results obtained with the present force formulation are validated against other numerical formulations for circular and square cylinder in laminar flow. The capabilities of the proposed formulation are demonstrated on ice trajectory calculations for highly separated flow behind a bluff body, representative of inflight aircraft ice shedding.  相似文献   

17.
In this work, an approach for performing mesh adaptation in the numerical simulation of two‐dimensional unsteady flow with moving immersed boundaries is presented. In each adaptation period, the mesh is refined in the regions where the solution evolves or the moving bodies pass and is unrefined in the regions where the phenomena or the bodies deviate. The flow field and the fluid–solid interface are recomputed on the adapted mesh. The adaptation indicator is defined according to the magnitude of the vorticity in the flow field. There is no lag between the adapted mesh and the computed solution, and the adaptation frequency can be controlled to reduce the errors due to the solution transferring between the old mesh and the new one. The preservation of conservation property is mandatory in long‐time scale simulations, so a P1‐conservative interpolation is used in the solution transferring. A nonboundary‐conforming method is employed to solve the flow equations. Therefore, the moving‐boundary flows can be simulated on a fixed mesh, and there is no need to update the mesh at each time step to follow the motion or the deformation of the solid boundary. To validate the present mesh adaptation method, we have simulated several unsteady flows over a circular cylinder stationary or with forced oscillation, a single self‐propelled swimming fish, and two fish swimming in the same or different directions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The problem of motion of a rigid body in an elastic medium is solved analytically for the case when a separation zone caused by asymmetry is formed in front of the body. A scheme of flow around wedge-shaped and ogive bodies is given for the entire range of the velocities under consideration. It is shown that there exists a limit velocity such that the separation zone disappears when the body moves at a velocity greater than the velocity of transverse waves. The forces exerted on a wedge-shaped body and on an ogive body are the same in the case of the limit velocity.  相似文献   

20.
A methodology for improved robustness in the simulation of high void fraction free surface polydisperse bubbly flows in curvilinear overset grids is presented. The method is fully two‐way coupled in the sense that the bubbly field affects the continuous fluid and vice versa. A hybrid projection approach is used in which staggered contravariant velocities at cell faces are computed for transport and pressure–velocity coupling while the momentum equation is solved on a collocated grid arrangement. Conservation of mass is formulated such that a strong coupling between void fraction, pressure, and velocity is achieved within a partitioned approach, solving each field separately. A pressure–velocity projection solver is iterated together with a predictor stage for the void fraction to achieve a robust coupling. The implementation is described for general curvilinear grids detailing particulars in the neighborhood to overset interfaces or a free surface. A balanced forced method to avoid the generation of spurious currents is extended for curvilinear grids. The overall methodology allows simulation of high void fraction flows and is stable even when strong packing forces accounting for bubble collisions are included. Convergence and stability in one‐dimensional (1D) and two‐dimensional (2D) configurations is evaluated. Finally, a full‐scale simulation of the bubbly flow around a flat‐bottom boat is performed demonstrating the applicability of the methodology to complex problems of engineering interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号