首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
[Mn2(CHZ)4(H2O)2](PA)4·10H2O的制备和分子结构研究   总被引:10,自引:0,他引:10  
本文论述了苦味酸(PA,三硝基苯酚)锰与碳酰肼(CHZ, NH2NHCONHNH2)反应制备目标配合物的方法及该配合物的晶体结构。该配合物的结构式为[O,O′-μ-Mn2(CHZ)4(H2O2)](PA)4·10H2O。晶体属三斜晶系,P1 空间群。晶体学参数为:a=0.8269(1) nm, b=1.2812(1) nm, c=1.5915(1) nm; α=109.58(1)°, β=95.19(1)°, γ=92.76(1)°, V=1.5765(2)nm3; Z=1, Dc=1.580 g·cm-3, μ(Mo Kα)=520 m-1。晶体结构经全矩阵最小二乘法修正,最终偏离因子R=0.0557。该化合物为具有中心对称的双核配合物,以两个碳酰肼分子中羰基氧为桥原子将两个锰离子结合起来,与锰离子形成配位键的原子是碳酰肼分子第一、五氮原子,羰基氧原子和水分子中的氧原子,锰离子的配位数为七。若味酸根作为外界离子以库伦力和氢键与内界离子结合成配合物分子。  相似文献   

2.
合成了新型配合物{(n-Bu)2Sn[(η5-C5H5)Fe(η5-C5H4)COO]2}2,用元素分析、红外光谱和核磁共振谱( 1H、13C、119Sn)进行了表征,并用X-射线单晶衍射分析法测定其晶体结构。晶体属单斜晶系,空间群P21/c,晶胞参数a=11.753(4)?,b=21.133(7)?,c=23.374(9)?,β=101.62(3)°,V=5687(4)?3Z=4,Dc=1.614Mg·m-3,μ(MoKα)=1.912mm-1F(000)=2800,最终可靠因子R1=0.0827,wR2=0.2085。配合物分子呈中心对称,是具有Sn2O2中心内环的二聚体结构;每个锡原子与5个O原子和2个C原子形成扭曲的五角双锥几何构型,其中5个O原子为赤道配位原子,而C-Sn-C为配合物的轴。  相似文献   

3.
合成了2个新的希土冠醚配合物Ln(NO3)3·C26H38N2O4(Ln=La、Ce; C26H38N2O4=1, 7, 10, 16-四氧-4,13-二氮杂-N,N′-二苄基环十八烷)。通过元素分析,红外光谱,拉曼光谱及其 1H核磁共振谱进行表征。用四圆衍射仪测定了La(NO3)3·C26H38N2O4·CH3CN的晶体结构。晶体属三斜晶系,P1空间群,晶胞参数:a=1.2869(4) nm, b=1.5868(6) nm, c=0.9147(2) nm; α=101.89(2)°, β=105.38(2)°, γ=71.96(3)°; Z=2。dcald.=1.58 g·cm-3, μ(Mo)=13.25 cm-1。中心镧离子与冠醚配体中的4个氧原子和2个氮原子配位,3个硝酸根中的6个氧原子也与La3+配位,形成配位数为12的配合物。  相似文献   

4.
由H3nta(H3nta=nitriloriacetic acid)、Phen(Phen=1,10-phenanthroline)与Cu2+离子反应,合成标题配合物[Cu2(nta)(Phen)3]NO3·6H2O。该配合物的晶体属单斜晶系,空间群为P21/c。在配合物中,2个中心铜原子分别与配位原子构成变形八面体和变形三角双锥结构。晶体中结构单元通过分子间氢键和π-π堆积,形成了三维网络结构。TG分析结果表明标题配合物在194 ℃以下是稳定的。  相似文献   

5.
用溶液法合成了钴的配合物[Co(Hdhpmy)(H2O)3]·3H2O(H3dhpmy=4,6-二羟基嘧啶-2-硫醇乙酸),对它进行了元素分析、红外光谱、荧光等表征,并用X-射线单晶衍射测定了配合物的单晶结构。标题配位聚合物晶体属正交晶系,Pca21空间群。弱的π-π相互作用将单分子连接成一维链状结构,而氢键使配合物形成三维网状结构。  相似文献   

6.
硝酸铁,硝酸铈,邻菲咯啉(phen)和钛铁试剂(Tiron)通过水热方法合成了一种d-f异双核配合物 [Fe(phen)3]2[FeCe(tiron)3]·6H2O,tiron=C6H2O8S2。X-射线单晶衍射分析表明,晶体属立方晶系,P213空间群,晶胞参数为:a=2.194 09(4) nm,V=10.562 4(3) nm3,Z=4,F(000)=4 648,R1=0.045 1,wR2=0.107 7,S=1.072。在具有C3对称性的[FeCe(tiron)3]6-单元中,Fe(Ⅲ)与6个酚氧配位形成一个反三棱柱配位多面体,Ce(Ⅲ)则与3个桥联的酚氧μ2-O和3个磺酸基的氧形成另一个与FeO6共用底面的反三棱柱配位多面体CeO6。配阳离子通过phen-phen之间的π-π相互作用和与配阴离子间的静电引力等作用组装成一种三角梅状准主/客体型的超分子。在2~300 K温度范围内测试了配合物的变温磁化率,结果表明, Ce(Ⅲ)-Fe(Ⅲ)之间存在典型的反铁磁性相互作用。  相似文献   

7.
Ln2O3、硝酸铁、邻菲罗啉和钛铁试剂(tiron)通过水热法自组装合成了2个异质同晶的3d-4f杂核配合物[Fe(phen)3]2[FeLn(H2O)(tiron)3]·6H2O, 其中, Ln=Ho (1)和Yb (2)。X-射线单晶衍射分析表明, 晶体属立方晶系, P213空间群。3个tiron4-配体利用酚氧桥联Ln3+和Fe3+形成具有C3对称性的[FeLn(H2O)(tiron)3]6-异双核配位单元, 其中七配位的Ln3+呈现一种畸变的单帽反三棱柱配位构型。配阳离子[Fe(phen)3]3+通过phen-phen之间的π-π相互作用和与配阴离子间的静电引力等作用组装成三维的超分子。在2~300 K温度范围内测试了配合物的变温磁化率, 结果表明, Ln(Ⅲ)-Fe(Ⅲ)之间存在反铁磁性相互作用。  相似文献   

8.
在水热条件下,利用硫代羟基二乙酸配体[thiodiglycolic acid=H2tda]和TbCl3·nH2O合成了新型稀土配合物[Tb2(tda)3(H2O)2]。单晶结构表明,配合物是以共边多面体[Tb2O16]为基本单元构筑的二维结构,并通过弱相互作用拓展为三维超分子体系。中心原子铽与氧原子的配位数是8和9,分别形成了单帽反四棱柱和三帽三角棱柱构型的空间配位多面体。配体H2tda在配合物中存在两种配位模式:(a) 双“顺-顺桥式双齿、螯合桥式三齿”模式和(b) 双“螯合双齿、顺-反桥式双齿”模式。荧光光谱研究表明:该配合物在室温下呈现较强的绿色荧光发射。配合物属三斜晶系,空间群P1。  相似文献   

9.
利用微波技术合成了配合物[Gd2(Gly)6(H2O)4](ClO4)6(H2O)5, 进行了化学成分分析、红外表征和热重分析. 应用X衍射仪测定其晶体结构, 该晶体为一维链结构, 属三斜晶系, P 空间群, 晶胞参数: a=1.1569(17) nm, b=1.4138(2) nm, c=1.5642(2) nm, α=96.910(2)°, β=102.735(2)°, γ=105.512(2)°, V=2.3606(6) nm3, Z=2, Dc=2.144 g•cm-3. 采用精密溶解-反应量热计, 通过设计热化学循环, 计算出了该配合物的标准摩尔生成焓为 -(7960.73±3.23) kJ•mol-1.  相似文献   

10.
利用二烃基氧化锡和α-萘氧乙酸按1∶1反应,合成了8种新的有机锡化合物,{[(n-C4H9)2Sn(OOCCH2OC10H7)]2O}2(R= nBu 1,2-ClC6H4CH2 2,3-ClC6H4CH2 3,4-ClC6H4CH2 4,2-FC6H4CH2 5,3-FC6H4CH2 6, 4-FC6H4CH2 7, 4-NCC6H4CH2 8)。用元素分析、IR、 1H NMR对其结构进行了表征,并测定了化合物{[(n-C4H9)2Sn(OOCCH2OC10H7)]2O}2 (1)的晶体结构。该化合物晶体属三斜晶系,空间群P1,a=11.974(7) nm,b=1.360 5(9) nm,c=1.386 5(9) nm,α=103.940(9)°,β=104.876(8)°,γ=99.807(9)°,Z=1,V=2.053(2) nm3Dc=1.431 Mg·m-3,μ=1.261 mm-1F(000)=900,S=1.004,R1=0.061 0,wR2=0.151 9。结果表明,化合物1是以Sn2O2为中心的中心对称二聚体结构,内环锡和外环锡原子均为五配位的畸变三角双锥构型。  相似文献   

11.
The half-sandwich rare-earth complexes [M(III)(acac)(TClPP)] (M = Sm, Eu, Y; TClPP = meso-tetrakis(4-chlorophenyl)porphyrinate; acac = acetylacetonate), generated in situ from [M(acac)3] x n H2O and H2(TClPP), were treated with 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine [H2{Pc(alpha-OC5H11)4}] (Pc = phthalocyaninate) under reflux in n-octanol to yield both the neutral nonprotonated and protonated (phthalocyaninato)(porphyrinato) rare-earth double-decker complexes, [M(III){Pc(alpha-OC5H11)4}(TClPP)] (1-3) and [M(III)H{Pc(alpha-OC5H11)4}(TClPP)] (4-6), respectively. In contrast, reaction of [Y(III)(acac)(TClPP)] with 1,4,8,11,15,18,22,25-octakis(1-butyloxy)phthalocyanine [H2Pc(alpha-OC4H9)8] gave only the protonated double-decker complex [Y(III)H{Pc(alpha-OC4H9)8}(TClPP)] (7). These observations clearly show the importance of the number and positions of substituents on the phthalocyanine ligand in controlling the nature of the (phthalocyaninato)(porphyrinato) rare-earth double-deckers obtained. In particular, alpha-alkoxylation of the phthalocyanine ligand is found to stabilize the protonated form, a fact supported by molecular-orbital calculations. A combination of mass spectrometry, NMR, UV-visible, near-IR, MCD, and IR spectroscopy, and X-ray diffraction analyses, facilitated the differentiation of the newly prepared neutral nonprotonated and protonated double-decker complexes. The crystal structure of the protonated form has been determined for the first time.  相似文献   

12.
Reaction of heteroleptic bis(phthalocyaninato) lanthanide compounds [(Pc)M{Pc(OC8H17)8}] [H2Pc=unsubstituted phthalocyanine; H2Pc(OC8H17)8 = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine] with monomeric complexes [(Pc)M(acac)] (Hacac=acetylacetone), both of which generated in situ, led to the isolation of heteroleptic phthalocyaninato-[2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato] lanthainde(III) triple-decker complexes [(Pc)M{Pc(OC8H17)8}] (M=Gd-Lu) (1-8) as the sole product. Heterodinuclear analogues [(Pc)Lu{Pc(OC8H17)8}M(Pc)] (M=Gd-Yb) (9-15) were obtained in a similar manner from the reaction of [(Pc)M{Pc(OC8H17)8}] (M=Gd-Yb) and [(Pc)Lu(acac)]. The molecular structures of the herterodinuclear compound [(Pc)Lu{Pc(OC8H17)8}Er(Pc)] (13) and its homodinuclear counterparts [(Pc)M{Pc(OC8H17)8}M(Pc)] (M=Er, Lu) (5, 8) have been determined by X-ray diffraction analysis; these structures exhibit a symmetrical molecular structure with one inner planar Pc(OC8H17)8 ligand and two outer domed Pc ligands. In addition to various spectroscopic analyses, the electrochemistry of these compounds has also been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, revealing the gradually enhanced pi-pi interactions among the phthalocyanine rings in the triple-deckers along with the lanthanide contraction.  相似文献   

13.
The infrared (IR) spectroscopic data for a series of 15 rare earth double-deckers M[Pc(MeOPhO)(8)](2) [M=Y, La, ..., Lu, except Pm; H(2)Pc=2, 3, 9, 10, 16, 17, 23, 24-octakis(4-methoxyphenoxy)phthalocyanine] with tervalent rare earths M(III)[Pc(MeOPhO)(8)](2) (M=Y, La, ..., Lu except Ce and Pm) and intermediate-valent cerium Ce[Pc(MeOPhO)(8)](2) have been collected with resolution of 2cm(-1). For M(III)[Pc(MeOPhO)(8)](2), typical IR marker band of the monoradical anion Pc(MeOPhO)(8)(-) shows characteristic absorption band whose frequency linearly varies in the range from 1,313 cm(-1) as a weak band for La[Pc(MeOPhO)(8)](2) to 1,324 cm(-1) as a medium band for Lu[Pc(MeOPhO)(8)](2) along with the decrease of rare earth ionic size. For Ce[Pc(MeOPhO)(8)](2), a weak band at 1,324 cm(-1) with contribution from pyrrole stretching was the marker IR band of phthalocyanine dianion Pc(2-). In conclusion, all the metal size-dependent IR absorptions should be contributed primarily from the vibrations of pyrrole, isoindole stretching, breathing or deformation or aza stretching of the Pc ring.  相似文献   

14.
Treatment of MIII(Pc)(acac) (M = Sm, Eu, Gd; Pc = phthalocyaninate; acac = acetylacetonate), generated in situ, with 3-(3-pentyloxy)phthalonitrile in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in n-pentanol affords racemic mixtures of the chiral double-deckers MIII(Pc)[Pc(OC5H11)4] [Pc(OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninate], which have been spectroscopically and structurally characterised.  相似文献   

15.
An ordered molecular assembly of heteroleptic bis(phthalocyaninato) rare earth complexes M(Pc)[Pc(OC8H17)8] [M = Tb, Lu; H2Pc = phthalocyanine; H2Pc(OC8H17)8 = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine] has been fabricated by the Langmuir-Blodgett (LB) technique and characterized by surface pressure-area isotherms, electronic absorption and polarized electronic absorption spectroscopy, low-angle X-ray diffraction, and atomic force microscopy. The molecular ordering in the LB multilayer film on SiO2 substrate was made into a p-channel field effect transistor (FET), which was generally operated in the enhanced mode. The energy levels of the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as the energy band diagram can be deduced from the electrochemical measurement results. The charge mobilities of Tb(Pc)[Pc(OC8H17)8] and Lu(Pc)[Pc(OC8H17)8] were calculated to be about 6.4 x 10(-4) and 1.7 x 10(-3) cm2 V(-1) s(-1), respectively.  相似文献   

16.
A series of heteroleptic bis(phthalocyaninato) europium(III) complexes, namely, Eu(Pc)[Pc(15C5)] (2), Eu(Pc)[Pc(opp-15C5)2] (3), Eu(Pc)[Pc(adj-15C5)2] (4), Eu(Pc)[Pc(15C5)3] (5), and Eu(Pc)[Pc(15C5)4] (6) [Pc = unsubstituted phthalocyaninate; Pc(15C5) = 2,3-(15-crown-5)phthalocyaninate; Pc(opp-15C5)2 = 2,3,16,17-bis(15-crown-5)phthalocyaninate; Pc(adj-15C5)2 = 2,3,9,10-bis(15-crown-5)phthalocyaninate; Pc(15C5)3 = 2,3,9,10,16,17-tris(15-crown-5)phthalocyaninate, Pc(15C5)4 = 2,3,9,10,16,17,24,25-tetrakis(15-crown-5)phthalocyaninate], with one, two, three, and four 15-crown-5 voids attached at different positions of one of the two phthalocyaninato ligands in the double-decker molecules, have been devised and prepared by Eu(Pc)(acac)-induced (Hacac = acetylacetone) mixed cyclization of the two corresponding phthalonitriles in the presence of organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in n-pentanol. For the purpose of comparative studies, homoleptic counterparts Eu(Pc)2 (1) and Eu[Pc(15C5)4]2 (7) have also been prepared. These sandwich double-decker complexes have been characterized by a wide range of spectroscopic methods in addition to elemental analysis. Their electrochemistry has also been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The molecular structure of Eu(Pc)[Pc(15C5)4] (6) has been determined by X-ray diffraction analysis. Their supramolecular structure-formation properties, in particular for compounds 5 and 6 in the presence of potassium ions, have also been comparatively studied for the purpose of future functional investigation.  相似文献   

17.
Homoleptic bis(phthalocyaninato) rare-earth double-deckers complexes [M(III)[Pc(alpha-OC5H11)4]2] (M = Eu, Y, Lu; Pc(alpha-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninate) have been prepared by treating the metal-free phthalocyanine H2Pc(alpha-OC5H11)4 with the corresponding M(acac)3.nH2O (acac = acetylacetonate) in refluxing n-octanol. Due to the C4h symmetry of the Pc(alpha-OC5H11)4 ligand and the double-decker structure, all the reactions give a mixture of two stereoisomers with C4h and D4 symmetry. The former isomer, which is a major product, can be partially separated by recrystallization due to its higher crystallinity. The molecular structure of the major isomer of the Y analogue has been determined by single-crystal X-ray diffraction analysis. The metal center is eight-coordinate bound to the isoindole nitrogen atoms of the two phthalocyaninato ligands, forming a distorted square antiprism. Such an arrangement leads to an interesting pinwheel structure when viewed along the C4 axis, which assumes a very unusual S8 symmetry. The major isomers of all these double-deckers have also been characterized with a wide range of spectroscopic methods. A systematic investigation of their electronic absorption and electrochemical data reveals that the pi-pi interaction between the two Pc(alpha-OC5H11)4 rings is weaker than that for the corresponding unsubstituted or beta-substituted bis(phthalocyaninato) analogues.  相似文献   

18.
The vibrational (IR and Raman) spectra of neutral and reduced mixed (phthalocyaninato)(porphyrinato) yttrium(III) double-decker complexes Y(Pc)(Por) and [Y(Pc)(Por)] [the simplified models of mixed (phthalocyaninato)(porphyrinato) rare earth(III) complexes] are studied using density functional theory (DFT) calculations. The simulated IR and Raman spectra of Y(Pc)(Por) are compared with the experimental IR spectrum of Tb(Pc)(TClPP) and Raman spectrum of Y(Pc)(TClPP), respectively, and many bands can acceptably fit in spite of the different species. On the basis of comparison with the simulated spectra of PbPc and PbPor together with the assistance of normal coordinate analysis, the calculated frequencies in their IR and Raman spectra are identified in terms of the vibrational mode of different ligand for the first time. The calculated frequency at 1048 cm−1 in the IR spectrum of [Y(Pc)(Por)] with contribution from both Pc and Por vibrational modes is the characteristic IR vibrational mode of the reduced double-decker, while the characteristic IR vibrational mode of Y(Pc)(Por) attributed from the vibration of phthalocyanine monoanion radical Pc appears at 1257 cm−1. In line with our previous experimental findings that the Raman spectra of M(Pc)(TPP) and M(Pc)(TClPP) are dominated by the Pc vibrational modes, theoretical calculations indicate that most of the Raman vibrational modes contributed from Por ring are covered up by those of Pc ring and thus are hard to be recognized in the Raman spectra of [Y(Pc)(Por)] and Y(Pc)(Por) due to their much weaker intensity in comparison with that of Pc ligand. Comparison in the IR and Raman spectra between [Y(Pc)(Por)] and Y(Pc)(Por) also suggests the localization of hole on the Pc ring in the neutral double-decker Y(Pc)(Por). The present work, representing the first detailed DFT study on the vibrational spectra of mixed (phthalocyaninato)(porphyrinato) rare earth(III) double-decker complexes, is useful in helping to understand the vibrational spectroscopic properties of this series of mixed tetrapyrrole ring complexes.  相似文献   

19.
The electronic absorption spectroscopic data for two series of 60 unsubstituted/substituted bis(phthalocyaninato) and mixed [tetrakis(4-chlorophenyl)porphyrinato](phthalocyaninato) rare earth complexes M(Pc)2, M(Pc)2 and M(TClPP)(Pc) [M = Y, La…Lu except Pm; Pc = dianion of 2,3,9,10,16,17,23,24-octakis(4-methoxyphenoxy)phthalocyanine [Pc(MeOPhO)8], dianion of 3(4),12(13),21(22),30(31)-tetra(tert-butyl)phthalocyanine (TBPc) and TClPP = tetra(4-chloro)phenylporphyrin] have been measured in CHCl3. In this paper, the influence of the symmetry of macrocycle rare earth molecules, the effects of ionic radius of the rare earth metal and the influence of substituent species (tert-butyl and 4-methoxyphenoxy groups) onto the peripheral benzene rings on the electronic absorption characteristics of sandwich-type compounds have also been tentatively studied in detail.  相似文献   

20.
Recrystallization of the previously reported monosolvated bis(phthalocyaninato)niobium(IV), [Pc2Nb].CINP (CINP = 1-chloronaphthalene), has allowed isolation of a single crystal of a new solvated form, i.e. [Pc2Nb]. 3.5CINP, whose structure has been elucidated by X-ray work: space group P2(1)/n (No. 14); a = 16.765(3), b = 23.800(4), c = 19.421(4) A; alpha = gamma = 90 degrees, beta = 92.51(2) degrees; Z = 4. The sandwiched material is a "stapled" molecule, characterized by the presence of two intramolecular interligand C-C sigma bonds and highly strained phthalocyanine units, as formerly observed by crystallographic work for its Ti(IV) analogue, [Pc2Ti], and the +1 corresponding fragment, [Pc2Nb]+, present in the species [Pc2Nb](l3)(l2)0.5.3.5CINP. [Pc2Nb] appears to be reluctant to undergo further oxidation above the +1 oxidation state. Detailed theoretical studies by DFT and TDDFT methods have been developed on [Pc2Nb] and [Pc2Nb]+, also extended for comparison to the Ti(IV) complex [Pc2Ti], and an adequate picture of the ground-state electronic structure of these species has been achieved. Moreover, the excitation energies and oscillator strengths calculated for the closed-shell systems, [Pc2Ti] and [Pc2Nb]+, provide a satisfactory interpretation of their characteristic visible optical spectra and help to rationalize the similar features observed in the visible spectrum of the open-shell "stapled" complex, [Pc2Nb]. Thin solid films (100-250 nm) of [Pc2Nb] deposited on ITO (indium-doped tin oxide) show a reversible redox process in neutral or acidic aqueous electrolytes. The electrochemical and electrochromic properties of the sandwiched complex, combined with impedance and UV/visible spectral measurements, are presented and discussed. The achieved electrochemical information, while substantially in keeping with the observed chemical redox behavior and theoretical predictions, qualifies [Pc2Nb] as an "optically passive" electrode and a promising material for its use in electrochromic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号