首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
郝宁  胡江平 《物理学报》2018,67(20):207101-207101
铁基超导体和拓扑量子材料是近年来凝聚态物理两个重要的前沿研究方向.铁基超导体中是否能衍生出非平庸的拓扑现象是一个非常有意义的问题.本文从晶体对称性、布里渊区高对称点附近的有效模型以及自旋轨道耦合相互作用三个方面具体分析了铁基超导的电子结构的基本特点.在此基础上,重点阐述铁基超导的正常态、临近超导的长程有序态以及超导态中非平庸的拓扑量子态是如何衍生的;具体介绍了相关的理论模型以及结果,回顾了相关的实验进展,展望了该领域的发展前景.  相似文献   

2.
探寻拓扑上非平庸的凝聚体物质状态,特别是其电子结构和输运性质,是当前凝聚体物理 学领域非常重要的前沿研究方向。本文讨论的大多数主题都与电子波函数的拓扑性质有关。全文 除简短的引言外,包括拓扑量子现象、各种拓扑相、拓扑性准粒子的异常输运性质、拓扑性集 体激发和耦合激发,以及继续发展的拓扑量子态研究五个章节。这些章节着重反映拓扑量子态研 究的各个侧面,汇总起来方可以凸显凝聚体中拓扑量子态的全貌。  相似文献   

3.
Chimera states, a symmetry-breaking spatiotemporal pattern in nonlocally coupled identical dynamical units, have been identified in various systems and generalized to coupled nonidentical oscillators. It has been shown that strong heterogeneity in the frequencies of nonidentical oscillators might be harmful to chimera states. In this work, we consider a ring of nonlocally coupled bicomponent phase oscillators in which two types of oscillators are randomly distributed along the ring: some oscillators with natural frequency ω1 and others with ω2 . In this model, the heterogeneity in frequency is measured by frequency mismatch |ω1ω2| between the oscillators in these two subpopulations. We report that the nonlocally coupled bicomponent phase oscillators allow for chimera states no matter how large the frequency mismatch is. The bicomponent oscillators are composed of two chimera states, one supported by oscillators with natural frequency ω1 and the other by oscillators with natural frequency ω2. The two chimera states in two subpopulations are synchronized at weak frequency mismatch, in which the coherent oscillators in them share similar mean phase velocity, and are desynchronized at large frequency mismatch, in which the coherent oscillators in different subpopulations have distinct mean phase velocities. The synchronization–desynchronization transition between chimera states in these two subpopulations is observed with the increase in the frequency mismatch. The observed phenomena are theoretically analyzed by passing to the continuum limit and using the Ott-Antonsen approach.  相似文献   

4.
任景莉  于利萍  张李盈 《物理学报》2017,66(17):176401-176401
非晶态材料有着复杂的原子结构(短程有序、长程无序)和特殊的物理性质,其临界现象和相变问题一直受到学术界关注.非晶合金,又称为金属玻璃,是一种新型的非晶态材料,具有很高的强度和优异的弹性.从微观的角度来看,非晶合金可以看作是一个多粒子系统.临界现象的研究对认识和理解多粒子系统之间的相互作用有深刻的意义.本文主要讨论非晶合金中的临界现象,包括非晶合金从制备过程、微观结构到宏观的力学性能以及磁性方面存在的临界现象,并分析这些临界现象之间的内在联系,进而深入理解非晶合金的微观结构对其宏观性质的影响.这为认识非晶合金的形成本质,提高服役可靠性,探索具有实际应用价值的非晶合金提供理论依据.  相似文献   

5.
对于无限大尺寸两腿自旋1/2的XXZ自旋梯子模型,通过运用基于随机行走的张量网络(TN)算法数值模拟出基态波函数,首次尝试研究自旋梯子模型的约化保真度、普适序参量、纠缠熵等物理观测量,并系统研究基态保真度的三维挤点与二维分叉、约化保真度的分叉、局域序参量、普适序参量、纠缠熵和量子相变之间存在的关联关系.基于张量网络表示的算法在任意随机选择初始状态时,可以得到两腿XXZ量子自旋梯子系统简并的对称破缺基态波函数,该基态波函数是由于Z2对称破缺引起的.本文期望所提供的方法可为进一步研究凝聚态物质中热力学极限下的强关联电子量子晶格自旋梯子系统的量子相变和量子临界现象提供一种更有效的强大的工具.  相似文献   

6.
沈健  T.Z.Ward  L.F.Yin 《中国物理 B》2013,22(1):17501-017501
It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high Tc superconductivity in cuprates,colossal magnetoresistance(CMR) in manganites,and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom-charge,lattice,orbital,and spin states.The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities,or electronic phase separation(EPS).In many of these hard materials,the functionality is a result of the soft electronic component that leads to self-organization.In this paper,we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites.Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them,it is possible to simultaneously probe EPS domains with different electronic states.This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation,movement,and fluctuation.Pushing this trend to its limit,we propose to control the formation process of the EPS using external local fields,which include magnetic exchange field,strain field,and electric field.We term the ability to pattern EPS "electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level,and greatly enhances the potential for realizing true oxide electronics.  相似文献   

7.
王健  吴世巧  梅军 《物理学报》2017,66(22):224301-224301
构建了一种简单的二维声子晶体:由两个横截面为三角形的钢柱所组成的复式元胞按三角点阵的形式排列在空气中,等效地形成了一个蜂巢点阵结构.当三角形钢柱的取向与三角点阵的高对称方向一致时,整个体系具有C_(6v)对称性.研究发现:在保持钢柱填充率不变的条件下,只需要将所有三角柱绕着自己的中心旋转180°,就可实现二重简并的p态和d态在布里渊区中心Γ点处的频率反转,且该能带反转过程实质上是一个拓扑相变过程.通过利用Γ点的P态和d态的空间旋转对称性,构造了一个赝时反演对称性,并在声学系统中实现了类似于电子系统中量子自旋霍尔效应的赝自旋态.随后通过k·p微扰法导出了Γ点附近的有效哈密顿量,并分别计算了拓扑平庸和非平庸系统的自旋陈数,揭示了能带反转和拓扑相变的内在联系.最后通过数值模拟演示了受到拓扑不变量保护的声波边界态的单向传输行为和对缺陷的背向散射抑制.文中所研究的声波体系,尽管材料普通常见,但其拓扑带隙的相对宽度超过21%,比已报道的类似体系的带隙都要宽,且工作原理涵盖从次声波到超声波的很大频率范围,从而在实际应用上具有较大的优势和潜力.  相似文献   

8.
We study nonequilibrium steady states, phase transitions and critical phenomena in a d-dimensional lattice model which represents a magnetic system under the action of a field fluctuating very rapidly with time. This induces competing kinetics which produces a sort of (dynamical) frustration which might occur also in some natural disordered systems. The exact solution for d = 1, partial exact results for d ≥ 2, and a comparison with some related models are reported.  相似文献   

9.
《Physics letters. A》2020,384(32):126828
We simulate various topological phenomena in condense matter, such as formation of different topological phases, boundary and edge states, through two types of quantum walk with step-dependent coins. Particularly, we show that one-dimensional quantum walk with step-dependent coin simulates all types of topological phases in BDI family, as well as all types of boundary and edge states. In addition, we show that step-dependent coins provide the number of steps as a controlling factor over the simulations. In fact, with tuning number of steps, we can determine the occurrences of boundary, edge states and topological phases, their types and where they should be located. These two features make quantum walks versatile and highly controllable simulators of topological phases, boundary, edge states, and topological phase transitions. We also report on emergences of cell-like structures for simulated topological phenomena. Each cell contains all types of boundary (edge) states and topological phases of BDI family.  相似文献   

10.
M. El Yadari 《Physica A》2010,389(21):4677-34
The effects of random crystal field on the stationary states of the kinetic spin-1 Blume Capel model are studied using the Glauber-type stochastic dynamics under the time-dependent oscillating field assumption. Our investigation, based on the equilibrium ground state phase diagram, revealed many interesting phenomena. The known phases, in the equilibrium case, are obtained for high field and are represented by limit cycles. The phase diagram of the pure pure kinetic Ising spin- and spin-1 Blume Capel models are deduced as particular cases. First-order, second-order transition lines, dynamical critical and dynamical double critical end points are also obtained.  相似文献   

11.
12.
庄军  谭维翰 《光学学报》1997,17(7):33-840
用数值模拟的方法研究了光折变振荡器的一些时空行为,结果表明在简并或准简并条件下的横模空间耦合将使得光折变振荡器表现出与普通激光器相似的时空现象,例如不同横向模式间的合作频率锁定,时空周期行为及多模振荡时的阵发混沌现象等等。  相似文献   

13.
Magnetic materials have become controllable on the nanometre scale. Such fine structures exhibit a wide range of fascinating phenomena, such as lowdimensional magnetism, induced magnetization in noble metals, electron interference patterns, oscillatory magnetic coupling and 'giant' magnetoresistance. Magnetic multilayers with nanometre spacings are among the first metallic quantum structures to become incorporated into electronic devices, such as reading heads for hard discs. This article is intended to familiarize the reader with the physics and technology of magnetic nanostructures. It starts out with recent progress in nanofabrication, gives a tutorial on the connection between electronic states and magnetic properties, surveys the state of the art in characterization techniques, explains unique phenomena in two-, one- and zero-dimensional structures, points out applications in magnetic storage technology and considers fundamental limits to storage density. Particular emphasis is placed on the connection between magnetism and the underlying electronic states, such as the spin-split energy bands, s, p versus d states, surface states, and quantum well states.  相似文献   

14.
The manipulation of individual, mobile quanta is a key goal of quantum communication; to achieve this, nonlinear phenomena in open systems can play a critical role. We show theoretically that a variety of strong quantum nonlinear phenomena occur in a completely open one-dimensional waveguide coupled to an N-type four-level system. We focus on photon blockade and the creation of single-photon states in the absence of a cavity. Many-body bound states appear due to the strong photon-photon correlation mediated by the four-level system. These bound states cause photon blockade, which can generate a sub-Poissonian single-photon source.  相似文献   

15.
侯配玉  褚赓  高健  张彦涛  张联齐 《中国物理 B》2016,25(1):16104-016104
Progress in the research on phase transitions during Li+extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries.Physical phenomena such as phase transitions(and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li+insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties.  相似文献   

16.
The behavior of geometric phase elements illuminated with partially polarized monochromatic beams is investigated both theoretically and experimentally. The element discussed in this paper is composed of wave plates with π-retardation and a space-variant orientation angle. We found that a beam emerging from such an element comprises two polarization orders; right-and left-handed circularly polarized states with conjugate geometric phase modification. This phase equals twice the orientation angle of the space-variant wave plate comprising the element. Apart from the two polarization orders, the emerging beam coherence polarization matrix includes a “vectorial interference matrix” which contains information concerning the correlation between the two orthogonal, circularly polarized portions of the incident beam. In this paper we measure this correlation by a simple interference experiment. In addition, we found that the equivalent mutual intensity of the emerging beam is modulated according to the geometric phase induced by the element. Other interesting phenomena concerning propagation will be discussed theoretically and demonstrated experimentally. The experiment made use of a spherical geometric phase element that was realized by use of a space-variant subwavelength grating illuminated with CO2 laser radiation of 10.6 μm wavelength.  相似文献   

17.
Magnetic rotation and antimagnetic rotation are exotic rotational phenomena observed in weakly deformed or near-spherical nuclei, which are respectively interpreted in terms of the shears mechanism and two shearslike mechanism. Since their observations, magnetic rotation and antimagnetic rotation phenomena have been mainly investigated in the framework of tilted axis cranking based on the pairing plus quadrupole model. For the last decades, the covariant density functional theory and its extension have been proved to be successful in describing series of nuclear ground-states and excited states properties, including the binding energies, radii, single-particle spectra, resonance states, halo phenomena, magnetic moments, magnetic rotation, low-lying excitations, shape phase transitions, collective rotation and vibrations, etc. This review will mainly focus on the tilted axis cranking covariant density functional theory and its application for the magnetic rotation and antimagnetic rotation phenomena.  相似文献   

18.
We compare phase transition(-like) phenomena in small model systems for both microcanonical and canonical ensembles. The model systems correspond to a few classical (non-quantum) point particles confined in a one-dimensional box and interacting via Lennard-Jones-type pair potentials. By means of these simple examples it can be shown already that the microcanonical thermodynamic functions of a small system may exhibit rich oscillatory behavior and, in particular, singularities (non-analyticities) separating different microscopic phases. These microscopic phases may be identified as different microphysical dissociation states of the small system. The microscopic oscillations of microcanonical thermodynamic quantities (e.g., temperature, heat capacity, or pressure) should in principle be observable in suitably designed evaporation/dissociation experiments (which must realize the physical preconditions of the microcanonical ensemble). By contrast, singular phase transitions cannot occur, if a small system is embedded into an infinite heat bath (thermostat), corresponding to the canonical ensemble. For the simple model systems under consideration, it is nevertheless possible to identify a smooth canonical phase transition by studying the distribution of complex zeros of the canonical partition function.  相似文献   

19.
Various concepts of clustering phenomena are discussed. Precise multicluster solutions constructed by the present authors for an A-nucleon problem whose dynamical properties are described by a generalized Elliott Hamiltonian are used as a mathematical formalism of the theory of clustering phenomena in nuclei. It is shown that qualitative features of various clustering phenomena, such as the very fact of the existence of cluster states, their classification, and selectivity of reactions that populate them, are explained within the concept being discussed. The 2α + bineutron three-cluster states of the 10Be nucleus are classified, and their spectrum is calculated. It is demonstrated that the results of these calculations are in good agreement with experimental data.  相似文献   

20.
Roy-型奇偶非线性相干态的位相概率分布   总被引:4,自引:0,他引:4       下载免费PDF全文
王继锁  刘堂昆  冯健  孙金祚 《物理学报》2004,53(11):3729-3732
借助于数值计算方法,研究了Roy-型奇偶非线性相干态的位相概率分布特性.结果表明,它们的位相概率分布不同;与通常的奇偶相干态不同,在这种新的奇偶非线性相干态中,Pegg-Barnett位相概率分布能明显地反映出不同的量子干涉特性. 关键词: Roy-型奇偶非线性相干态 Pegg-Barnett位相算符公式 位相概率分布  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号