首页 | 本学科首页   官方微博 | 高级检索  
     检索      

二维声子晶体中简单旋转操作导致的拓扑相变
引用本文:王健,吴世巧,梅军.二维声子晶体中简单旋转操作导致的拓扑相变[J].物理学报,2017,66(22):224301-224301.
作者姓名:王健  吴世巧  梅军
作者单位:华南理工大学物理与光电学院, 广州 510641
基金项目:国家自然科学基金(批准号:11274120,11574087)资助的课题.
摘    要:构建了一种简单的二维声子晶体:由两个横截面为三角形的钢柱所组成的复式元胞按三角点阵的形式排列在空气中,等效地形成了一个蜂巢点阵结构.当三角形钢柱的取向与三角点阵的高对称方向一致时,整个体系具有C_(6v)对称性.研究发现:在保持钢柱填充率不变的条件下,只需要将所有三角柱绕着自己的中心旋转180°,就可实现二重简并的p态和d态在布里渊区中心Γ点处的频率反转,且该能带反转过程实质上是一个拓扑相变过程.通过利用Γ点的P态和d态的空间旋转对称性,构造了一个赝时反演对称性,并在声学系统中实现了类似于电子系统中量子自旋霍尔效应的赝自旋态.随后通过k·p微扰法导出了Γ点附近的有效哈密顿量,并分别计算了拓扑平庸和非平庸系统的自旋陈数,揭示了能带反转和拓扑相变的内在联系.最后通过数值模拟演示了受到拓扑不变量保护的声波边界态的单向传输行为和对缺陷的背向散射抑制.文中所研究的声波体系,尽管材料普通常见,但其拓扑带隙的相对宽度超过21%,比已报道的类似体系的带隙都要宽,且工作原理涵盖从次声波到超声波的很大频率范围,从而在实际应用上具有较大的优势和潜力.

关 键 词:声子晶体  拓扑相变  能带反转  赝自旋
收稿时间:2017-07-24

Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals
Wang Jian,Wu Shi-Qiao,Mei Jun.Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals[J].Acta Physica Sinica,2017,66(22):224301-224301.
Authors:Wang Jian  Wu Shi-Qiao  Mei Jun
Institution:School of Physics, South China University of Technology, Guangzhou 510641, China
Abstract:We design a two-dimensional acoustic crystal (AC) to obtain topologically protected edge states for sound waves. The AC is composed of a triangular array of a complex unit cell consisting of two identical triangle-shaped steel rods arranged in air. The steel rods are placed on the vertices of the hexagonal unit cell so that the whole lattice possesses the C6v symmetry. We show that by simply rotating all triangular rods around their respective centers by 180 degrees, a topological phase transition can be achieved, and more importantly, such a transition is accomplished with no need of changing the fill ratios or changing the positions of the rods. Interestingly, the achieved topologically nontrivial band gap has a very large frequency width, which is really beneficial to future applications. The topological properties of the AC are rooted in the spatial symmetries of the eigenstates. It is well known that there are two doubly-degenerate eigenstates at the Γ point for a C6v point group, and they are usually called the p and d states in electronic system. By utilizing the spatial symmetries of the p and d states in the AC, we can construct the pseudo-time reversal symmetry which renders the Kramers doubling in this classical system. We find pseudospin states in the interface between topologically trivial and nontrivial ACs, where anticlockwise (clockwise) rotational behaviors of time-averaged Poynting vectors correspond to the pseudospin-up (pseudospin-down) orientations of the edge states, respectively. These phenomena are very similar to the real spin states of quantum spin Hall effect in electronic systems. We also develop an effective Hamiltonian for the associated bands to characterize the topological properties of the AC around the Brillouin zone center by the k·p perturbation method. We calculate the spin Chern numbers of the ACs, and reveal the inherent link between the band inversion and the topological phase transition. With full-wave simulations, we demonstrate the one-way propagation of sound waves along the interface between topologically distinct ACs, and demonstrate the robustness of the edge states against different types of defects including bends, cavity and disorder. Our design provides a new way to realize acoustic topological effects in a wide frequency range spanning from infrasound to ultrasound. Potential applications and acoustic devices based on our design are expected, so that people can manipulate and transport sound waves in a more efficient way.
Keywords:acoustic crystals  topological phase transition  band inversion  pseudospin
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号