首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molybdic acid (H2MoO4, MA) doped polyaniline (PANI) micro/nanostructures were prepared by a self-assembly process in the presence of ammonium persulfate ((NH4)2S2O8, APS) as the oxidant. The morphology of PANI-MA changed from nanofibers or nanotubes (~160 nm in diameter) to co-existence of nanofibers and microspheres (~3 μm in diameter) and that accompanied an enhancement of the conductivity from 5.42 × 10?3 S cm?1 to 2.8 × 10?1 S cm?1as the molar ratio of MA to aniline varied from 0.01 to 1.5. With increasing the polymerization time, moreover, the pH value of the reaction solution not only decreased due to sulfuric acid produced during the course of the polymerization, but also accompanied a change in morphology from microspheres to nanofibers. All above-mentioned observations could be interpreted by spherical and cylindrical micelle composed of MA as the “soft-template” in forming the micro/nanostructures.  相似文献   

2.
C60/polyaniline (PANI) nanocomposites have been synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in the presence of C60 by using an interfacial reaction. When compared with the pure PANI nanofibers from the similar process, the diameter of the obtained C60/PANI nanofibers was increased because of the encapsulation of C60 into PANI during aniline polymerization, which resulted from the charge‐transfer interactions between C60 and aniline fragment in PANI. In addition, the resulting C60/PANI nanocomposites synthesized from the low initial C60/aniline molar ratio (less than 1:25) showed the homogenous morphology composed of fiber network structures, which has an electrical conductivity as high as 1.1 × 10?4 S/cm. However, the C60/PANI nanocomposites from the higher initial C60/aniline molar ratio (more than 1:15) showed the nonuniformly distributed morphology, and the electrical conductivity was decreased to 3.5 × 10?5 S/cm. Moreover, the C60/PANI nanocomposites from the interfacial reaction showed a higher value of electrical conductivity than the mechanically mixed C60/PANI blends with the same C60 content, because of the more evenly distributed microstructures. FTIR, UV–vis, and CV data confirmed the presence of C60 and the significant charge‐transfer interactions in the resultant nanocomposites, which was responsible for the morphology development of the C60/PANI and the variation of the electrical conductivity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

3.
Under microwave‐assisted synthesis, polyaniline (PANI) products with multiple nanostructures were synthesized by the oxidative polymerization of aniline and ammonium peroxodisulfate in the different concentrations of hydrochloric acid solutions. The structural analysis of PANI using FTIR, UV, and XPS indicated that phenazine‐like oligomers were produced in acid‐free and low acidic systems. Moreover, long linear PANI chains were obtained in the presence of highly acidic solutions. The morphology of PANI observed by SEM and TEM showed that nanoscale structures, including stacked sheets, nanotubes, branched nanofibers, and uniform nanofibers, occurred respectively in acid‐free solution, low acidity, medium and high acidity systems, effectively regulating by acidity. The formation mechanism of PANI nanostructures was explored here. The sheets were formed by the oligomers containing flat phenazine rings that can be stacked together with strong π–π interactions. Furthermore, nanotubes were fabricated by the self‐curling of thin sheets consisted of phenazine‐like oligomers with numerous linear units in the chains. The nanofibers are supposed to form by the linear PANI chains and the secondary growth during aniline polymerization caused the branch formation on the nanofibers. All results indicate that acidity, rather than microwave assistance, is the critical factor that determines the polymerization mechanism and the final nanostructure. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3357–3369  相似文献   

4.
Summary: Salicylic acid‐doped hollow polyaniline and rhodamine B composite spheres (1.9–3.3 µm in average diameter) with a high conductivity (≈10−1 S · cm−1) and a strong fluorescence were synthesized by a template‐free method. The morphologies, electrical and fluorescent properties of the hollow composite microspheres can be adjusted by changing the content of RhB in the composites opening a simple route to preparing multi‐functionalized micro/nanostructures.

SEM and TEM images of PANI‐SA/RhB synthesized under concentration of 1 × 10−3 M RhB.  相似文献   


5.
通过氧化偶联聚合的方法我们制备了一种新型电活性聚芳醚砜,这种聚合物主链上含有苯基封端的苯胺四聚体齐聚物单元。我们通红外、核磁和XRD对其结构进行了表征。在1.0M的硫酸水溶液介质中我们对其电活性进行了研究,聚合物展现出两对氧化还原峰。此外,我们使用TGA测试手段对其热稳定性也做了研究。在室温质子酸掺杂的条件下聚合物的导电率为1.37 × 10-7 S·cm-1。  相似文献   

6.
Polyaniline (PANI)/organoclay exfoliated nanocomposites containing different organoclay contents (14–50 wt%) were prepared. PANI emeraldine base (EB) and oligomeric PANI (o‐PANI) were intercalated into montmorillonite (MMT) modified by four types of polyoxyalkylene diamine or triamine (organoclay) using N‐methyl pyrolidinone (NMP) as a solvent in the presence of 0.1 M HCl. o‐PANI and EB have been synthesized by oxidative polymerization of aniline using ammonium peroxydisulfate (APS). Infrared absorption spectra (IR) confirm the electrostatic interaction between negatively charged surface of MMT and positively charged sites in PANI. X‐ray diffraction (XRD) studies disclosed that the d001 spacing between interlamellar surface disappeared at low content of the organoclay. The morphology of these materials was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrical conductivities of the PANI‐organoclay and o‐PANI‐organoclay nanocomposites were 1.5 × 10?3–2 × 10?4 and 9.5 × 10?7–1.8 × 10?9 S/cm, respectively depending on the ratio of PANI. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Novel polypyrrole (PPy) micro/nanofibers were synthesized via a self-assembly process by using 4-hydroxy-3-[(4-sulfo-1-naphthalenyl) azo]-1-naphthalenesulfonic acid (Acid Red B) as dopant and ferric chloride (FeCl3) as oxidant. Experimental conditions, including the concentration of the dopant, reaction temperature and stirring state have been investigated for their influences on the morphology of the synthesized PPy micro/nanofibers. The products were characterized by scanning electron microscopy, transmission electron microscopy and Fourier-transform infrared spectroscopy. The formation mechanism of micro/nanofibers was studied. It is believed that the micelles formed by the dopant and pyrrole monomer act as templates during the synthesis process. Two functions of aggregation and synthesis are proposed in the reaction system simultaneously, and the morphologies of micro/nanofibers are the co-operations of these two functions. The maximum conductivity value of the PPy micro/nanofibers was 8.56 S cm?1  相似文献   

8.
A novel sulfonated diamine, 4,4′‐bis(4‐amino‐3‐trifluoromethylphenoxy) biphenyl 3,3′‐disulfonic acid (F‐BAPBDS), was successfully synthesized by nucleophilic aromatic substitution of 4,4′‐dihydroxybiphenyl with 2‐chloro‐5‐nitrobenzotrifluoride, followed by reduction and sulfonation. A series of sulfonated polyimides of high molecular weight (SPI‐x, x represents the molar percentage of the sulfonated monomer) were prepared by copolymerization of 1,4,5,8‐naphathlenetetracarboxylic dianhydride (NTDA) with F‐BAPBDS and nonsulfonated diamine. Flexible and tough membranes of high mechanical strength were obtained by solution casting and the electrolyte properties of the polymers were intensively investigated. The copolymer membranes exhibited excellent oxidative stability due to the introducing of the CF3 groups. The SPI membranes displayed desirable proton conductivity (0.52×10−1–0.97×10−1 S·cm−1) and low methanol permeability (less than 2.8×10−7 cm2·s−1). The highest proton conductivity (1.89×10−1 S·cm−1) was obtained for the SPI‐90 membrane at 80°C, with an IEC of 2.12 mequiv/g. This value is higher than that of Nafion 117 (1.7×10−1 S·cm−1). Furthermore, the hydrolytic stability of the obtained SPIs is better than the BDSA and ODADS based SPIs due to the hydrophobic CF3 groups which protect the imide ring from being attacked by water molecules, in spite of its strong electron‐withdrawing behaviors.  相似文献   

9.
This study prepared a dense Sm‐doped ceria (SDC) and an SDC carbonate composite (abbreviated as SDC‐C). The latter was prepared by immersing porous SDC with a formula of (Ce0.8Sm0.2)O1.9 and a relative density of approximately 65‐70% into a molten mixture of carbonates containing 1:1 molar ratio of Li2CO3 and Na2CO3 at 500 °C. The relative density of the SDC‐C was close to 100%. In addition, SDC oxide without carbonates, which also has a relative density of close to 100%, was heat treated at 1600 °C. At 500 °C, the electrical conductivity and ionic transference number (ti) of the SDC oxide were 1.79(5) × 10?3 S·cm?1 and 0.99(2), respectively, such that electronic conduction could be disregarded. Increasing the temperature caused a gradual decrease in the ti of SDC. Following the addition of carbonates to SDC, the electrical conductivity reached 1.23(9) × 10?1 S·cm?1 at 500 °C. After 14 days (340 h), the electrical conductivity of the SDC‐C at 490 °C, leveled off at about 6 × 10?2 S·cm?1. SDC‐C could be used as a potential electrolyte in solid oxide fuel cells (SOFCs) at temperatures below 500 °C.  相似文献   

10.
In a 0.010 m HCl solution, we successfully transformed irregular polyaniline (PANI) agglomerates into uniform PANI nanofibers with a diameter of 46–145 nm and a characteristic length on the order of several microns by the addition of superparamagnetic Fe3O4 microspheres in a magnetic field. The PANI morphological evolution showed that the PANI nanofibers stemmed from the PANI coating shell synthesized on the surface of the Fe3O4 microsphere chains. It was found that the magnetic field could optimize the PANI nanofibers with a narrow diameter size distribution, and effectively suppressed secondary growth. When compared with other microspheres (like silica and polystyrene), only the use of superparamagnetic Fe3O4 microspheres resulted in the appearance of PANI nanofibers. Attempts to form these high‐quality PANI nanofibers in other concentrations of HCl solution were unsuccessful. This deficiency was largely attributed to the inappropriate quantity of aniline cations.  相似文献   

11.
A label‐free DNA biosensor based on three‐dimensional reduced graphene oxide (3D‐rGO) and polyaniline (PANI) nanofibers modified glassy carbon electrode (GCE) was successfully developed for supersensitive detection of breast cancer BRCA1. The results demonstrated that 3D‐rGO and PANI nanofibers had synergic effects for reducing the charge transfer resistance (Rct), meaning a huge enhancement in electrochemical activity of 3D‐rGO‐PANI/GCE. Probe DNA could be immobilized on 3D‐rGO‐PANI/GCE for special and sensitive recognition of target DNA (1.0×10?15–1.0×10?7 M) with a theoretical LOD of 3.01×10?16 M (3S/m). Furthermore, this proposed nano‐biosensor could directly detect BRCA1 in real blood samples.  相似文献   

12.
超疏水导电聚苯胺的界面聚合   总被引:1,自引:0,他引:1  
采用界面聚合和无模板法相结合的方法, 以具有疏水链的全氟癸二酸(PFSEA)为掺杂剂, 通过调节苯胺单体和FeCl3氧化剂的浓度实现了聚苯胺三维微/纳米结构形貌和尺寸的可控制备. 扫描电子显微镜测量结果显示, 聚苯胺是由一维纳米纤维自组装形成的三维微球结构; 红外吸收光谱和紫外-可见吸收光谱结果表明, 聚苯胺微球为掺杂态. 室温下, 该微/纳米结构聚苯胺微球的电导率为 9.6×10-3 S/cm, 表面水接触角为161.4°, 表现出半导体特性和超疏水性.  相似文献   

13.
《中国化学会会志》2017,64(9):1007-1022
The synthesis, structural characterization, and electrochemical properties of a series of isotruxene–polyaniline (PANI ) hybrid systems (SITPs , SITAs , and CITs ) are reported. The syntheses were performed by in situ chemical oxidative polymerization of aniline in the presence of isotruxene additives ITP and/or ITA at specific aniline‐to‐additive molar ratios. The polymers SITPs and SITAs display granular morphology, but for the polymers CITs a spherical morphology with a diameter of 300–500 nm is found. These hybrid systems display electrochemical capacitive performance superior to those of the parent PANI prepared under the same condition (e.g., 385–463 vs. 181 F/g at 3 mA /cm2 current density during charge–discharge test). Molecular (star‐shaped or hyperbranched vs. linear topology) and supramolecular (isotruxene–PANI π–π and cation–π interactions) models in accounting for the observed morphology and electrochemical properties are provided.  相似文献   

14.
借助沉积聚合辅助的“无模板”法在玻璃基片上制备出水杨酸掺杂的微/纳米结构的聚苯胺.实验发现,微/纳米结构的形貌及其浸润性依赖于掺杂剂与单体的摩尔比和沉积时间.当低分子量的聚苯胺微米球和纳米球共存时,其沉积的表面呈现出高的疏水性(接触角θ=148.0°),这主要来源于微/纳米共存的结构导致高的表面粗糙度,能捕获更多的空气所致.FTIR,紫外-可见光谱和X光射线衍射表征了微/纳米球的分子结构及其结晶性.  相似文献   

15.
顾文秀  夏文水 《中国化学》2006,24(10):1458-1461
A novel synthesis of the functional carbohydrate 2-amino-2-deoxy-D-gluconic acid was introduced and itscomplex formation with Cu(Ⅱ)was investigated to obtain the stability constant for its further applications to thefood and pharmaceutical industries.The equilibrium was investigated by spectrophotometric measurements andprocessed by dual-series linear regression method.Results:the yield of 2-amino-2-deoxy-D-gluconic acid is 70%.The complexation molar ratio is 1:2,the molar apsorptivity of the complex is 39.906 L·mol~(-1)·cm~(-1) at 630 nm,and the stability constant β_n is 6.24×10~5.  相似文献   

16.
A phosphorized polyaniline (PANI) doped with phytic acid (PhA) was synthesized by the chemical oxide method with PhA as a dopant and applied to improve the anticorrosion properties of magnesium-lithium (Mg-Li) alloys after blending with eco-friendly silane sol. The chemical structures and morphologies of PANI samples were evaluated by FTIR spectroscopy, UV-Vis-NIR spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). All characterizations indicate that the as-synthesized phosphorized PANI (PANI-PhA) exists in doped emeraldine salt state with net-like structures crosslinked by phosphate carboxyl groups. The conductivity and thermostability of PANI-PhA were better than those of PANI doped with phosphoric acid (PANI-H3PO4) and undoped PANI. The anticorrosion properties of PANI/silane sol composite coatings for Mg-Li alloy were tested by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results prove that the anticorrosion ability of PANI-PhA is the best among the three PANI samples, as shown by a low corrosion current (1.28 × 10?7 A·cm?2) and high impedance (5.62 × 106 Ω·cm2). The possible anticorrosion mechanism was proposed based on procedure analysis.  相似文献   

17.
The electrical conductivity, thermoelectric power, and dielectric properties of polyaniline doped by boric acid (PANI‐B) have been investigated. The room temperature electrical conductivity of PANI‐B was found to be 1.02 × 10?4 S cm?1. The thermoelectric power factor for the polymer was found to be 0.64 µW m?1 K?2. The optical band gap of the PANI‐B was determined by optical absorption method, and the PANI‐B has a direct optical band gap of 3.71 eV. The alternating charge transport mechanism of the polymer is based on the correlated barrier hopping (CBH) model. The imaginary part of the dielectric modulus for the PANI‐B suggests a temperature dependent dielectric relaxation mechanism. Electrical conductivity and thermoelectric power results indicate that the PANI‐B is an organic semiconductor with thermally activated conduction mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Polymers synthesized from coconut oil as a precursor find scarce applications. Polyesteramide urethane synthesized from coconut oil, a natural resource, is a dough‐like material, unusable in our study. Upon loading with polyaniline it becomes tough and flexible. Composites of ClO4 ? doped polyaniline with coconut oil based poly(esteramide urethane) (CPEAU) were prepared by a solution blending technique, using different ratios of polyaniline(2 wt%, 4 wt% and 8 wt%). The composites were further characterized by FT‐IR, DSC, TGA, XRD, and SEM. Conductivity was found to be in the range 2.5×10?5?5.7×10?4 S cm?1. The composite was found to show weak hydrogen bonding interactions between PANI and CPEAU at 8 wt% loading.  相似文献   

19.
Aniline was polymerized in the presence of poly(vinyl chloride) (PVC) powders in hydrochloric acid to in situ prepare poly(vinyl chloride)/polyaniline (PVC/PANI) composite particles. UV‐vis spectra and FT‐IR spectra indicate PANI in PVC/PANI composite particles possessed a higher oxidation state with decreased aniline content in reactants. Both conductivity and impact strength of the dodecylbenzenesulfonic acid (DBSA) doped PANI composites (PVC/PANI‐DBSA), which were compression molded from the in situ prepared PVC/PANI particles, increase with the pressing temperature and decrease with the increase of DBSA doped PANI (PANI‐DBSA) loading. An excellent electric conductivity of 5.06 × 10?2 S/cm and impact strength of 0.518 KJ/m2 could be achieved for the in situ synthesized and subsequently compression molded composite. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A “Chemical one step method” (COSM) is proposed to prepare electromagnetic functional composite nanofibers of polyaniline (PANI/γ‐Fe2O3) having a diameter of ≈20 nm. In this approach FeCl3 is acts as the oxidant either for polymerization of aniline or for preparation of γ‐Fe2O3 magnets. Besides, it also provides protons produced by the hydrolysis process for doping PANI. It is found that the composite nanofibers have a high conductivity (10−1 ∼ 100 S · cm−1) and super‐paramagnetic properties (Ms = 0.46 ∼ 6.03 emu · g−1 and Hc = 0) at room temperature, where the conductivity is mainly affected by the molar ratio of FeCl3 to aniline monomer whereas the magnetic properties are dominated by the amount of FeCl2.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号