首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《中国化学会会志》2017,64(9):1001-1001
This invited paper reports a series of isotruxenepolyaniline (PANI) hybrid systems prepared by chemical oxidation of aniline in the presence of isotruxene additives ITP and / or ITA at specific aniline‐to‐additive molar ratios. These hybrid systems are superior to the parent PANI in the performance of electrochemical capacitance. More details will be discussed by Dr. Jye‐Shane Yang and his co‐workers on page 1007–1022 in this issue.

  相似文献   


2.
One‐step fabrication of graphene–polyaniline (graphene–PANI) hybrid film was facilely achieved by cyclic voltammetric electrolysis of a bath containing both graphene oxide (GO) and aniline, where graphene is obtained by electrochemical reduction of GO and PANI is simultaneously obtained by aniline electropolymerization. As there is no strong attraction between aniline and GO under the electrodeposition conditions, the independent depositions of PANI and reduced GO nanosheets at their greatly differed potentials led to alternate layered graphene–PANI films, with the topmost layer being PANI particles or graphene sheets just by changing the initial scan directions. The two kinds of graphene–PANI hybrid films present excellent but different electrical and electrochemical behaviors.  相似文献   

3.
The polyaniline micro/nanostructure was prepared by a self‐assembly process with molybdic acid as dopants in the presence of ammonium persulfate as the oxidant. It was found that the morphology of PANI micro/nanostructure was affected by the concentration of the dopant, that is, the morphology of PANI changed from nanofibers to co‐existence of nanofibers and microspheres as the molar ratio of molybdic acid to aniline varied from 0.01 to 1.5. Under the same condition it was also found that the conductivity value of PANI enhanced from 4.58×10?3 S·cm?1 to 3.8×10?1 S·cm?1. The structure of PANI was characterized by FTIR and XRD which confirmed the presence of the molybdic acid in the PANI. The electrochemical characteristics of the PANI nanofibers were investigated by means of cyclic voltammetry. The morphology of PANI in the process of polymerization was characterized by SEM. It was found that when the molar ratio of molybdic acid to aniline was 0.3, the morphology of PANI was co‐existence of nanofibers and microspheres and the formation of microspheres was ahead of the nanofibers.  相似文献   

4.
4‐{n‐[4‐(4‐Nitrophenylazo)phenyloxy]alkyl}aminobenzene sulfonic acid (Cn‐ABSA, where n = 2, 4, 6, 8, or 10) as a novel dopant for conducting polymers of polyaniline (PANI) was designed and synthesized. The molecular structure of Cn‐ABSA was characterized with 1H NMR, Fourier transform infrared, and secondary‐ion mass spectrometry. Nanostructures (nanotubes or nanorods) of PANI–(Cn‐ABSA) were successfully synthesized with a self‐assembly process in the presence of Cn‐ABSA as the dopant. The morphology (shape and size) and conductivity of the resulting nanostructures strongly depended on the number of alkyl groups (n) and, in particular, the addition of water before polymerization. The formed micelles of aniline/Cn‐ABSA/water were proposed to be templatelike in forming PANI–(Cn‐ABSA) nanostructures on the basis of the emulsion properties measured by dynamic light scattering. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3485–3497, 2001  相似文献   

5.
C60/polyaniline (PANI) nanocomposites have been synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in the presence of C60 by using an interfacial reaction. When compared with the pure PANI nanofibers from the similar process, the diameter of the obtained C60/PANI nanofibers was increased because of the encapsulation of C60 into PANI during aniline polymerization, which resulted from the charge‐transfer interactions between C60 and aniline fragment in PANI. In addition, the resulting C60/PANI nanocomposites synthesized from the low initial C60/aniline molar ratio (less than 1:25) showed the homogenous morphology composed of fiber network structures, which has an electrical conductivity as high as 1.1 × 10?4 S/cm. However, the C60/PANI nanocomposites from the higher initial C60/aniline molar ratio (more than 1:15) showed the nonuniformly distributed morphology, and the electrical conductivity was decreased to 3.5 × 10?5 S/cm. Moreover, the C60/PANI nanocomposites from the interfacial reaction showed a higher value of electrical conductivity than the mechanically mixed C60/PANI blends with the same C60 content, because of the more evenly distributed microstructures. FTIR, UV–vis, and CV data confirmed the presence of C60 and the significant charge‐transfer interactions in the resultant nanocomposites, which was responsible for the morphology development of the C60/PANI and the variation of the electrical conductivity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
《Electroanalysis》2006,18(16):1564-1571
The work details the electrocatalysis of oxygen reduction reaction (ORR) in 0.5 M H2SO4 medium on a modified electrode containing a film of polyaniline (PANI) grafted multi‐wall carbon nanotube (MWNT) over the surface of glassy carbon electrode. We have fabricated a novel modified electrode in which conducting polymer is present as connected unit to MWNT. The GC/PANI‐g‐MWNT modified electrode (ME) is fabricated by electrochemical polymerization of a mixture of amine functionalized MWNT and aniline with GC as working electrode. Cyclic voltammetry and amperometry are used to demonstrate the electrocatalytic activity of the GC/PANI‐g‐MWNT‐ME. The GC/PANI‐g‐MWNT‐ME exhibits remarkable electrocatalytic activity for ORR. A more positive onset potential and higher catalytic current for ORR are striking features of GC/PANI‐g‐MWNT‐ME. Rapid and high sensitivity of GC/PANI‐g‐MWNT‐ME to ORR are evident from the higher rate constant (7.92×102 M?1 s?1) value for the reduction process. Double potential chronoamperometry and rotating disk and rotating ring‐disk electrode (RRDE) experiments are employed to investigate the kinetic parameters of ORR at this electrode. Results from RDE and RRDE voltammetry demonstrate the involvement of two electron transfer in oxygen reduction to form hydrogen peroxide in acidic media.  相似文献   

7.
Since the discovery of carbon nanotubes (CNTs) and intrinsically conductive polymers, such as polyaniline (PANI) some research has focused on the development of novel hybrid materials by combining CNT and PANI to achieve their complementary properties. Electrically conductive elastomer nano‐composites containing CNT and PANI are described in the present investigation. The synthesis procedure includes in‐situ inverse emulsion polymerization of aniline doped with dodecylbenzene sulfonic acid in the presence of CNT and dissolved styrene‐isoprene‐styrene (SIS) block copolymer, followed by a precipitation–filtration step. The synthesis step is carried out under ultrasonication. The resulting uniform SIS/CNT/PANI dispersions are stable for long time durations. The incorporation of CNT/PANI in the SIS elastomeric matrix improves thermal, mechanical and electrical properties of the nano‐composites. The formation of continuous three‐dimensional CNT/PANI network, assumed to be responsible for enhancement of the resulting nano‐composite properties, is observed by HRSEM. A relatively low percolation threshold of 0.4 wt.% CNT was determined. The Young's modulus of the SIS/CNT/PANI significantly increases in the presence of CNT. High electrical conductivity levels were obtained in the ternary component systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Interactions between the π bonds in the aromatic rings of polyaniline (PANI) with carbon nanostructures (CNs) facilitate charge transfer between the two components. Different types of phenyleneamine‐terminated CNs, including carbon nano‐onions (CNOs) and single‐walled and multi‐walled carbon nanotubes (SWNTs and MWNTs, respectively), were prepared as templates, and the CN/PANI nanocomposites were easily prepared with uniform core–shell structures. By varying the ratio of the aniline monomers relative to the CNs in the in situ chemical polymerization process, the thickness of the PANI layers was effectively controlled. The morphological and electrical properties of the nanocomposite were determined and compared. The thickness and structure of the PANI films on the CNs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and infrared spectroscopy. TEM and SEM revealed that the composite films consisted of nanoporous networks of CNs coated with polymeric aniline. The electrochemical properties of the composites were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. These studies showed that the CN/PANI composite films had lower resistance than pure polymeric films of PANI, and the presence of CNs much improved the mechanical stability. The specific electrochemical capacitance of the CNO/PANI composite films was significantly larger than for pure PANI.  相似文献   

9.
Covalent attachment of thiolated probes to conducting polymers such as polyaniline (PANI) is a promising approach towards the development of electrochemical sensors and biosensors. However, thiolation alters the conjugated polymer backbone and influences the electrochemical behavior of the conducting polymer. PANI studied in this work was electropolymerized on glassy carbon (GC) electrodes from a solution of 0.1 M aniline in 0.5 or 1.0 M H2SO4. The GC/PANI electrodes were then functionalized by covalent attachment of 2-mercaptoethanol to the PANI backbone. The progress of thiolation was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). Thiolation of PANI was found to cause an initial decrease in electroactivity at 0–0.25 V and an increase in electroactivity at 0.25–0.6 V. However, prolonged thiolation caused a loss of electroactivity of PANI, which could be seen from EIS measurements as a dramatic decrease in the bulk redox capacitance of PANI.  相似文献   

10.
Polyaniline doped with Zn2+ (PANI/Zn2+) films was synthesized by cyclic voltammetric method on stainless steel mesh substrates in 0.2 mol L?1 aniline and 0.5 mol L?1 sulfuric acid electrolyte with various concentrations of zinc sulfate (ZnSO4·7H2O). The structure and morphology of PANI and PANI/Zn2+ films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy techniques, respectively. The electrochemical properties of PANI and PANI/Zn2+ films were investigated by cyclic voltammetry, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy in 0.5 mol L?1 H2SO4 electrolyte in a three-electrode system. The results show that the surface morphology of PANI/Zn2+ is more rough than that of pure PANI. The specific capacitance of the PANI/Zn2+ film displays a larger specific capacitance of 738 F g?1, lower resistance, and better stability as compared with the pure PANI film. Thus, good capacitive performance demonstrates its potential superiority for supercapacitors.  相似文献   

11.
The polyaniline (PANI) prepared by the pulse galvanostatic method (PGM) or the galvanostatic method on a stainless steel substrate from an aqueous solution of 0.5 mol/l H2SO4 with 0.2 mol/l aniline has been studied as an electroactive material in supercapacitors. The electrochemical performance of the PANI supercapacitor is characterized by cyclic voltammetry, a galvanostatic charge–discharge test and electrochemical impedance spectroscopy in NaClO4 and HClO4 mixed electrolyte. The results show that PANI films with different morphology and hence different capacitance are synthesized by controlling the synthesis methods and conditions. Owing to the double-layer capacitance and pseudocapacitance increase with increasing real surface area of PANI, the capacitive performances of PANI were enhanced with increasing real surface area of PANI. The highest capacitance is obtained for the PANI film with nanofibrous morphology. From charge–discharge studies of a nanofibrous PANI capacitor, a specific capacitance of 609 F/g and a specific energy density of 26.8 Wh/kg have been obtained at a discharge current density of 1.5 mA/cm2. The PANI capacitor also shows little degradation of capacitance after 1,000 cycles. The effects of discharge current density and deposited charge of PANI on capacitance are investigated. The results indicate that the nanofibrous PANI prepared by the PGM is promising for supercapacitors.  相似文献   

12.
In this work, we present a new electrochemical disposable platform based on poly(aniline‐co‐anthranilic acid) (PANI/PAA) composite polymer coupled with an aptamer for sensitive detection of β‐lactoglobulin. Firstly, PANI/PAA film was electrodeposited on the graphite screen‐printed electrode surface by cyclic voltammetry. The co‐polymer modified electrode was then employed as platform for the covalent immobilization of an amino‐modified aptamer. Various β‐lactoglobulin solutions, with a fixed amount of biotinylated oligonucleotide complementary sequence, were dropped onto the aptasensor surface. A streptavidin‐alkaline phosphatase conjugate was then employed to trace the affinity reaction. After the addition of 1‐naphthyl‐phosphate enzymatic substrate, 1‐naphthol electroactive product was detected by differential pulse voltammetry. A decrease in the signal was obtained when the target concentration was increased, in according to a signal‐off approach. After optimization of key experimental parameters, a dose‐response curve was obtained between 0.01–1.0 μg mL?1 β‐lactoglobulin concentration range. The limit of detection of 0.053 μg L?1 was obtained. Milk samples spiked with β‐lactoglobulin were analyzed.  相似文献   

13.
Novel polyaniline/gadolinium (PANI/Gd) composites were successfully synthesized by “in‐situ” polymerization at the presence of rare earth Gd coordination complex and D‐tartaric acid (an a dopant). It is rarely to find the studies on related field to add rare earth Gd coordination complex as fillers. Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD) and scanning electron microscope (SEM) were used to examine the structure and surface appearance characterization of materials. The thermal stability performance of composites was investigated by thermogravimetry and derivative thermogravimetry (TG‐DTG). Electrochemical performance was measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge–discharge test. The magnetic property was investigated by physical property measurement system (PPMS). The structure and surface appearance characterization and the magnetic properties jointly demonstrate the polymerization of rare earth Gd coordination complex and PANI–D‐tartrate (DTA) not only simple physical mixing but also chemical mixing. TG‐DTG analysis suggests that thermal stability of PANI/Gd composites is higher than that of PANI–DTA. Electrochemical performance tests and SEM indicate that the composite (PANI/Gd = 3.3:1,mass ratio) has the most regular morphology and best specific capacitance. The magnetization of the composite (PANI/Gd = 3.3:1,mass ratio)is evidently smaller compared with PANI–DTA and rare earth Gd coordination complex. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A series of electrically conductive zwitterion hybrid materials were facilely synthesized with anionic acacia gum (AG) and cationic HCl doped polyaniline (PANI) through radical copolymerization method. A representative acacia gum‐polyaniline hybrid (AG‐PANI) was characterized using UV‐vis, FTIR, 1H NMR, and SEM. HCl doped AG‐PANI possesses zwitterion character due to the presence of NH on PANI and ? COO? of AG. The cyclic voltammogram of AG‐PANI showed three anodic peaks at 0.20 V, 0.58 V, and 0.64 V along with two cathodic peaks at 0.50 V and 0.40 V with large capacitive background currents. AG‐PANI exhibited electrical conductivity that was found dependent on the ratio of aniline to AG, temperature, and pH. Its electrical conductivity versus temperature plot indicated Mott's nearest‐neighbor hopping mechanism at the temperature range 83–323 K. The hybridization of AG and PANI yielded eco‐friendly advanced functional materials for technological applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Polyaniline (PANI)/organoclay exfoliated nanocomposites containing different organoclay contents (14–50 wt%) were prepared. PANI emeraldine base (EB) and oligomeric PANI (o‐PANI) were intercalated into montmorillonite (MMT) modified by four types of polyoxyalkylene diamine or triamine (organoclay) using N‐methyl pyrolidinone (NMP) as a solvent in the presence of 0.1 M HCl. o‐PANI and EB have been synthesized by oxidative polymerization of aniline using ammonium peroxydisulfate (APS). Infrared absorption spectra (IR) confirm the electrostatic interaction between negatively charged surface of MMT and positively charged sites in PANI. X‐ray diffraction (XRD) studies disclosed that the d001 spacing between interlamellar surface disappeared at low content of the organoclay. The morphology of these materials was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrical conductivities of the PANI‐organoclay and o‐PANI‐organoclay nanocomposites were 1.5 × 10?3–2 × 10?4 and 9.5 × 10?7–1.8 × 10?9 S/cm, respectively depending on the ratio of PANI. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Polyaniline (PANI) in an emeraldine‐base form, synthesized by chemical oxidation polymerization, was doped with camphor sulfonic acid (CSA). The conducting complex (PANI–CSA) and a matrix, polyamide‐66, polyamide‐11, or polyamide‐1010, were dissolved in a mixed solvent, and the blend solution was dropped onto glass and dried for the preparation of PANI/polyamide composite films. The conductivity of the films ranged from 10?7 to 100 S/cm when the weight fraction of PANI–CSA in the matrices changed from 0.01 to 0.09, and the percolation threshold was about 2 wt %. The morphology of the composite films before and after etching was studied with scanning electron microscopy, and the thermal properties of the composite films were monitored with differential scanning calorimetry. The results indicated that the morphology of the blend systems was in a globular form. The addition of PANI–CSA to the films resulted in a decrease in the melting temperature of the composite films and also affected the crystallinity of the blend systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2531–2538, 2002  相似文献   

17.
Vertical polyaniline (PANI) nanowire arrays on graphene‐sheet‐coated polyester cloth (RGO/PETC) were fabricated by the in situ chemical polymerization of aniline. The 3D conductive network that was formed by the graphene sheets greatly enhanced the conductivity of PANI/RGO/PETC and improved its mechanical stability. PANI nanowire arrays increased the active surface area of PANI, whilst the hierarchically porous structure of the PANI/RGO/PETC electrode facilitated the diffusion of the electrolyte ions. Electrochemical measurements showed that the composite electrode exhibited a maximum specific capacitance of 1293 F g?1 at a current density of 1 A g?1. Capacitance retention was greater than 95 %, even after 3000 cycles, which indicated that the electrode material has excellent cycling stability. Moreover, the electrode structure endowed the PANI/RGO/PETC electrode with a stable electrochemical performance under mechanical bending and stretching.  相似文献   

18.
This article provides a brief overview of recent work by the authors’ group as well as related researches reported by others on controlling the morphology and exploring the formation mechanism of typical micro-/nanostructures of polyaniline (PANI) and aniline oligomers through template-free aniline chemical oxidation process. The contents are organised as follows: (i) tuning the morphology of aniline polymerisation products by employing ultrasonic irradiation, mass transfer, and pH profiles; (ii) exploring the formation mechanism of micro-/nanostructures during aniline chemical oxidation through examining the precipitation behaviours of aniline oligomers and polymers in a post-synthetic system; (iii) tailoring PANI micro-/nanostuctures into pre-designed morphology by introducing certain heterogeneous nucleation centres; (iv) application potential of PANI nanofibres in the areas of transparent conductive film, electromagnetic interference-shielding coating and graphene-based electrode materials. This short review concludes with our perspectives on the challenges faced in gaining the exact formation mechanism of PANI micro-/nanostructures and the future research possibility for morphologically precisely controlled PANI micro-/nanostructures.  相似文献   

19.
We have designed and developed a new strategy for the chemical and electrochemical graft copolymerization of aniline onto poly(vinyl chloride). For this purpose, first phenylamine groups were incorporated into poly(vinyl chloride) via a nucleophilic substitution reaction in the presence of a solvent composed of 4‐aminophenol, potassium carbonate, and dry N,N‐dimethylformamide at room temperature, in order to avoid cross‐linking. The macromonomer obtained was used in chemical and electrochemical oxidation copolymerization with aniline monomer to yield a poly(vinyl chloride)‐g‐polyaniline (PVC‐g‐PANI) graft copolymer. The chemical structures of samples as representatives were characterized by means of Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies. The electroactivity behaviors of the synthesized samples were verified under cyclic voltammetric conditions. The electrical conductivity and electroactivity measurements showed that the PVC‐g‐PANI graft copolymer has lower electrical conductivity as well as electroactivity than those of the pure PANI. However, the lower electrical conductivity and electroactivity levels in this material can be improved at the price of solubility and processability. Moreover, the thermal behavior and chemical composition of the synthesized graft copolymer were investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A novel route to prepare polyaniline (PANI)‐supported Pd(0) nanoparticles by a one‐pot chemical route is presented. Nanosized Pd(0) particles were first prepared by reduction of Pd(OAc)2 using t‐BuONa activated sodium hydride in refluxing THF. A ligand exchange with aniline on t‐BuONa‐stabilized Pd(0) particles yielded aniline‐stabilized particles. Pd(0)/PANI nanocomposites were finally obtained by polymerizing aniline‐stabilized Pd(0) particles using ammonium persulfate. Nanocomposites were characterized by transmission electron microscopy, X‐ray diffraction and X‐ray photoelectron spectroscopy. Results show that this one‐pot experimental route is successful in producing hybrid materials constituted of Pd(0) nanoparticles stabilized by PANI due to the strong binding of PANI amine groups to Pd(0) particles. TEM images of the nanohybrids show that metal particles with diameters of ca. 4.9 nm are homogeneously dispersed in PANI. The preliminary results indicate that the Pd(0) particles supported on PANI behave as efficient heterogeneous catalysts in the Heck and Suzuki–Miyaura reactions of aryl iodides. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号