首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper reports an experimental investigation of the vortex shedding wake behind a long flat plate inclined at a small angle of attack to a main flow stream. Detailed velocity fields are obtained with particle-image velocimetry (PIV) at successive phases in a vortex shedding cycle at three angles of attack, α=20°, 25° and 30°, at a Reynolds number Re≈5,300. Coherent patterns and dynamics of the vortices in the wake are revealed by the phase-averaged PIV vectors and derived turbulent properties. A vortex street pattern comprising a train of leading edge vortices alternating with a train of trailing edge vortices is found in the wake. The trailing edge vortex is shed directly from the sharp trailing edge while there are evidences that the formation and shedding of the leading edge vortex involve a more complicated mechanism. The leading edge vortex seems to be shed into the wake from an axial location near the trailing edge. After shedding, the vortices are convected downstream in the wake with a convection speed roughly equal to 0.8 the free-stream velocity. On reaching the same axial location, the trailing edge vortex, as compared to the leading edge vortex, is found to possess a higher peak vorticity level at its centre and induce more intense fluid circulation and Reynolds stresses production around it. It is found that the results at the three angles of attack can be collapsed into similar trends by using the projected plate width as the characteristic length of the flow.  相似文献   

2.
基于雨燕翅膀的仿生三角翼气动特性计算研究   总被引:1,自引:1,他引:0  
张庆  叶正寅 《力学学报》2021,53(2):373-385
针对低雷诺数微型飞行器的气动布局, 设计出类似雨燕翅膀的一组具有不同前缘钝度的中等后掠($\varLambda =50^{\circ}$)仿生三角翼. 为了定量对比研究三角翼后缘收缩产生的气动效应, 设计了一组具有同等后掠的普通三角翼. 为了深入研究仿生三角翼布局的前缘涡演化特性以及总体气动特性, 采用数值模拟方法详细地探索了低雷诺数($Re=1.58\times 10^{4})$流动条件下前缘涡涡流结构和气动力随迎角的变化规律. 分析结果表明, 前缘钝度和后缘收缩对仿生三角翼前缘涡的涡流强度和涡破裂位置有显著影响. 相对于钝前缘来说, 尖前缘使仿生三角翼上下表面的压力差增大, 涡流强度也更大, 增升作用也更显著. 相对于普通三角翼构型, 仿生三角翼的前缘斜切使其阻力更大, 但后缘的收缩使涡破裂位置固定在此位置, 因此整个上翼面保持低压, 总的升力更大. 由于小迎角时升力增大更明显, 因此仿生三角翼的气动效率在小迎角时明显大于普通三角翼. 这些结论对于揭示鸟类的飞行机理以及未来微型仿生飞行器的气动布局设计具有重要的研究价值.   相似文献   

3.
《Fluid Dynamics Research》1990,5(5-6):321-336
A new method of nonlinear formulation is presented to analyze the two-dimensional incompressible flow around a flexible plate waving near a rigid wall. A system of differential and integral equations is solved for the velocity field and the wake vortex. A nonlinear unsteady Kutta condition is imposed at the trailing edge in order to treat the case of large amplitude and fast oscillation accurately. The shed vortex sheet is discretized and approximated by a large number of vortex filaments, and their movements are visualized by numerical computation. The lift, thrust, power input and hydrodynamic efficiency are computed for various values of the distance of the waving plate from the wall.  相似文献   

4.
Open- and closed-loop control of vortex shedding in two-dimensional flow over a flat plate at high angle of attack is numerically investigated at a Reynolds number of 300. Unsteady actuation is modeled as a body force near the leading or trailing edge and is directed either upstream or downstream. For moderate angles of attack, sinusoidal forcing at the natural shedding frequency results in phase locking, with a periodic variation of lift at the same frequency, leading to higher unsteady lift than the natural shedding. However, at sufficiently high angles of attack, a subharmonic of the forcing frequency is also excited and the average lift over the forcing period varies from cycle-to-cycle in a complex manner. It is observed that the periods with the highest averaged lift are associated with particular phase differences between the forcing and the lift, but that this highest-lift shedding cycle is not always stably maintained with open-loop forcing. We design a feedback algorithm to lock the forcing with the phase shift associated with the highest period-averaged lift. It is shown that the compensator results in a stable phase-locked limit cycle for a broader range of forcing frequencies than the open-loop control, and that it is able to stabilize otherwise unstable high-lift limit cycles that cannot be obtained with open-loop control. For example, at an angle of attack of 40°, the feedback controller can increase the averaged magnitude of force on the plate by 76% and increase the averaged lift coefficient from 1.33 to 2.43.  相似文献   

5.
低雷诺数俯仰振荡翼型等离子体流动控制   总被引:2,自引:2,他引:0  
黄广靖  戴玉婷  杨超 《力学学报》2021,53(1):136-155
针对低雷诺数翼型气动性能差的特点, 通过介质阻挡放电(dielectric barrier discharge, DBD)等离子体激励控制的方法, 提高翼型低雷诺数下的气动特性,改善其流场结构. 采用二维准直接数值模拟方法求解非定常不可压Navier-Stokes方程,对具有俯仰运动的NACA0012翼型的低雷诺数流动展开数值模拟.同时将介质阻挡放电激励对流动的作用以彻体力源项的形式加入Navier-Stokes方程,通过数值模拟探究稳态DBD等离子体激励对俯仰振荡NACA0012翼型气动特性和流场特性的影响.为了进行流动控制, 分别在上下表面的前缘和后缘处安装DBD等离子体激励器,并提出四种激励器的开环控制策略,通过对比研究了这些控制策略在不同雷诺数、不同减缩频率以及激励位置下的控制效果.通过流场结构和动态压强分析了等离子体进行流场控制的机理. 结果表明,前缘DBD控制中控制策略B(负攻角时开启上表面激励器,正攻角时开启下表面激励器)效果最好,后缘DBD控制中控制策略C(逆时针旋转时开启上表面激励器,顺时针旋转时开启下表面激励器)效果最好,前缘DBD控制效果会随着减缩频率的增大而下降, 同时会导致阻力增大.而后缘DBD控制可以减小压差阻力, 优于前缘DBD控制,对于计算的所有减缩频率(5.01~11.82)都有较好的增升减阻效果.在不同雷诺数下, DBD控制的增升效果较为稳定, 而减阻效果随着雷诺数的降低而变差,这是由流体黏性效应增强导致的.   相似文献   

6.
刘惠祥  何国毅  王琦 《力学学报》2019,51(1):94-102
蜻蜓是自然界优秀的飞行家,滑翔是其常见且有效的飞行模式.蜻蜓优异的飞行能力来源于其翅膀的巧妙结构,褶皱是蜻蜓翅膀上最为显著的结构之一,不仅提高了翅膀的刚度,还改变了其气动特性,而飞行过程中柔性翅膀会产生变形是蜻蜓翅膀的另一特性.为揭示蜻蜓在滑翔时,柔性褶皱前翅的变形,探究褶皱和柔性的共同作用对其气动特性的影响,基于逆向工程,依据前人的测量数据和研究成果,通过三维建模软件建立了蜻蜓三维褶皱前翅的计算流体力学(computational fluiddynamics,CFD)模型和计算结构力学(computational structuralmechanics,CSD)模型,并通过模态分析验证了此模型有足够的精度.基于CFD方法和CFD/CSD双向流固耦合计算方法分别对蜻蜓滑翔飞行时刚性和柔性褶皱前翅的气动特性进行了数值模拟,结果表明,柔性褶皱前翅受气动载荷后,翅脉和翅膜产生形变,柔性前翅上下表面压力差相较于刚性前翅减小了,从而其升力和阻力也减小了,而在大攻角时,变形后的前缘脉诱导出比刚性前翅更强的前缘涡.因此在攻角小于10$^\circ$时刚性前翅的气动特性优于柔性前翅,继续增大攻角,柔性前翅的气动特性则优于刚性前翅.前翅受载后气动响应时间短,翅尖的变形最大,仅仅产生了垂直于翅膀所在平面方向上的变形,而没有发生扭转,翼根处受到应力最大,褶皱上凸部分承受蜻蜓滑翔时前翅的主要载荷.   相似文献   

7.
Measurements of the unsteady flow structure and force time history of pitching and plunging SD7003 and flat plate airfoils at low Reynolds numbers are presented. The airfoils were pitched and plunged in the effective angle of attack range of 2.4°–13.6° (shallow-stall kinematics) and ?6° to 22° (deep-stall kinematics). The shallow-stall kinematics results for the SD7003 airfoil show attached flow and laminar-to-turbulent transition at low effective angle of attack during the down stroke motion, while the flat plate model exhibits leading edge separation. Strong Re-number effects were found for the SD7003 airfoil which produced approximately 25 % increase in the peak lift coefficient at Re = 10,000 compared to higher Re flows. The flat plate airfoil showed reduced Re effects due to leading edge separation at the sharper leading edge, and the measured peak lift coefficient was higher than that predicted by unsteady potential flow theory. The deep-stall kinematics resulted in leading edge separation that led to formation of a large leading edge vortex (LEV) and a small trailing edge vortex (TEV) for both airfoils. The measured peak lift coefficient was significantly higher (~50 %) than that for the shallow-stall kinematics. The effect of airfoil shape on lift force was greater than the Re effect. Turbulence statistics were measured as a function of phase using ensemble averages. The results show anisotropic turbulence for the LEV and isotropic turbulence for the TEV. Comparison of unsteady potential flow theory with the experimental data showed better agreement by using the quasi-steady approximation, or setting C(k) = 1 in Theodorsen theory, for leading edge–separated flows.  相似文献   

8.
Wind tunnel experiments were conducted for the flow around a single flat plate and through an array of three parallel flat plates at different angles of incidence to compare their lift and drag coefficients for several values of the Reynolds number around 105 and for three aspect ratio values. The selected cascade configuration is of interest for a particular type of tidal hydrokinetic energy converter. The main differences in the lift and drag forces are discussed, finding that for a plate in a cascade the maximum lift coefficient takes place at a quite different angle of attack, depending on the aspect ratio. The optimal conditions for extracting power from a tidal current are analyzed.  相似文献   

9.
A flapping plate flow energy harvester in a viscous uniform flow is simulated using a two-dimensional numerical approach. Our focus is to study the effects of flexibility and active control on the power-extraction capability of the flapping plate, and consequently to find a strategy to increase its power-extraction efficiency. Four typical cases with optimal kinematics predicted by previous studies are presented and discussed: a rigid plate, a flexible plate, a plate with a flexible leading segment and a rigid trailing segment, and a rigid plate with a simple active control on the leading segment. Our simulations show that with the kinematic parameters considered, the plate flexibility cannot significantly improve the power-extraction capability of the plate while the active control on the leading segment of the rigid plate increases the power coefficient by 11.3%. The analysis of flow fields shows that the changes in the power coefficient and drag force are related to the vortex structures and pressure distributions near the plate, as well as the projection area of the plate in the direction of the translational movement.  相似文献   

10.
摆动方式对水翼输入功率的影响   总被引:1,自引:0,他引:1  
利用投影浸入边界法,研究了不同主动摆动方式对水翼输入功率的影响。计算模型采用二维NACA0012翼型,雷诺数Re=800。最大摆角θ0=75°,摆动频率f的变化范围为0.1Hz~0.2Hz,非正弦摆动参数β的变化范围为1~3。首先,研究摆动频率f和非正弦摆动参数β对平均输入功率的影响,研究发现,平均输入功率随着f和β值的增加而增加,但当f0.16 Hz,β2.5时,平均输入功率急剧增加。其次,在摆动频率f=0.16 Hz时,研究不同非正弦摆动参数β下力矩系数、输入功率系数以及升阻力系数随时间的变化规律,研究发现,随着β值的增加,峰值输入功率也逐渐增加,而且β值影响峰值输入功率出现的位置。最后,研究不同β值下,变化的尾流发展对输入功率的影响,认为水翼上下表面产生的后缘涡与升阻力有关系,水翼上表面的负涡对水翼摆动产生阻力,而下表面的负涡对水翼摆动产生升力,从而对水翼摆动的输入功率产生影响。  相似文献   

11.
The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.  相似文献   

12.
低雷诺数下柔性翼型气动性能分析   总被引:1,自引:0,他引:1  
基于流固耦合方法对吸力面5%至95%弦长处为三段柔性结构的NACA0012翼型绕流进行了数值模拟,研究了不同弹性模量下柔性翼型的气动性能和结构响应.结果表明:在大攻角下,翼面变形影响着翼型表面的非定常流场,起到延缓失速和提高升力的作用;失速后柔性翼的升力系数下降得较为缓慢,且柔性越大,升力系数下降得越平缓;适当减小弹性模量能够提高翼型的气动性能,然而弹性模量过小反而不利于翼型气动性能的提升,并且翼面会产生大幅度的振动.  相似文献   

13.
文章采用标准k-ω SST湍流模型和动网格技术, 实现了绕俯仰振荡NACA66水翼非定常流动结构与水动力特性的数值模拟, 并基于有限域涡量矩理论定量表征了局部旋涡结构对水翼动力特性的影响. 研究结果表明: 在水翼升程阶段, 当攻角较小时, 层流向湍流的转捩点由水翼尾缘向前缘移动; 在较大攻角时, 顺时针尾缘涡?TEV在水翼吸力面上生成并向前缘发展, 同时与吸力面上的顺时针前缘涡?LEV融合发展为附着在整个吸力面上的新前缘涡?LEV, 新的?LEV与逆时针尾缘涡+TEV相互作用直至完全脱落, 直接导致了水翼的动力失速, 在回程阶段, 绕振荡水翼的流场结构逐渐由湍流转变为层流. 基于有限域涡量矩理论的定量分析发现, 有限域内附着的?LEV和?TEV提供正升力, 当?LEV发展覆盖整个吸力面时对升力的贡献最大, 占总升力近50%, 而+TEV提供负升力. 同时发现, 有限域内各旋涡内部的不同区域提供的升力有正有负; 而逸出有限域的旋涡内部不同区域提供的升力方向均保持一致, 其中顺时针涡提供正升力, 而逆时针涡提供负升力. 在失速阶段, 域外旋涡整体对升力贡献较小且存在小幅波动, 体现了流动的非定常性.   相似文献   

14.
The effects of a trapped vortex cell (TVC) on the aerodynamic performance of a NACA0024 wing model were investigated experimentally at Re = 106 and 6.67×1056.67\times 10^{5}. The static pressure distributions around the model and the wake velocity profiles were measured to obtain lift and drag coefficients, for both the clean airfoil and the controlled configurations. Suction was applied in the cavity region to stabilize the trapped vortex. For comparison, a classical boundary layer suction configuration was also tested. The drag coefficient curve of the TVC-controlled airfoil showed sharp discontinuities and bifurcative behavior, generating two drag modes. A strong influence of the angle of attack, the suction rate and the Reynolds number on the drag coefficient was observed. With respect to the clean airfoil, the control led to a drag reduction only if the suction was high enough. Compared to the classical boundary layer suction configuration, the drag reduction was higher for the same amount of suction only in a specific range of incidence, i.e., α = −2° to α = 6° and only for the higher Reynolds number. For all the other conditions, the classical boundary layer suction configuration gave better drag performances. Moderate increments of lift were observed for the TVC-controlled airfoil at low incidence, while a 20% lift enhancement was observed in the stall region with respect to the baseline. However, the same lift increments were also observed for the classical boundary layer suction configuration. Pressure fluctuation measurements in the cavity region suggested a very complex interaction of several flow features. The two drag modes were characterized by typical unsteady phenomena observed in rectangular cavity flows, namely the shear layer mode and the wake mode.  相似文献   

15.
基于LBM-LES方法,对中低雷诺数下的NACA0012翼型纯音噪声进行了直接计算,研究了不同迎角和雷诺数对纯音噪声的影响。计算结果表明,翼型的声源主要位于翼型的分离区和后缘处,在不同迎角和雷诺数下的声辐射特征均具有偶极子声场的特点;迎角的增大将引起较大的旋涡尺度和湍流强度,吸力面声源区域前移。声压级频谱分析表明,随着迎角的增大,纯音噪声逐渐消失,噪声谱最终呈现宽频特征;随着雷诺数的增大,后缘压力脉动增大。声压级频谱中,主频频率随着雷诺数的增大而增大,且符合Paterson公式的幂律关系。此外,声压级频谱特性随着雷诺数的增大表现出由离散特性向宽频特性转变的趋势。  相似文献   

16.
A large eddy simulation (LES) study was conducted to investigate the three-dimensional characteristics of the turbulent flow past wavy cylinders with yaw angles from 0° to 60° at a subcritical Reynolds number of 3900. The relationships between force coefficients and vortex shedding frequency with yaw angles for both wavy cylinders and circular cylinders were investigated. Experimental measurements were also performed for the validation of the present LES results. Comparing with corresponding yawed circular cylinders at similar Reynolds number, significant differences in wake vortex patterns between wavy cylinder and circular cylinder were observed at small yaw angles. The difference in wake pattern becomes insignificant at large yaw angles. The mean drag coefficient and the Strouhal number obey the independence principle for circular cylinders at yaw angle less than 45°, while the independence principle was found to be unsuitable for yawed wavy cylinders. In general, the mean drag coefficients and the fluctuating lift coefficients of a yawed wavy cylinder are less than those of a corresponding yawed circular cylinder at the same flow condition. However, with the increase of the yaw angle, the advantageous effect of wavy cylinder on force and vibration control becomes insignificant.  相似文献   

17.
Laminar flow past a circular cylinder with multiple small-diameter control rods is numerically investigated in this study. The effects of rod-to-cylinder spacing ratio, rod and cylinder diameter ratio, cylinder Reynolds number, number of control rods and angle of attack on the hydrodynamics of the main circular cylinder are investigated. Four different flow regimes are identified based on the mechanism of lift and drag reduction. The range of rod-to-cylinder spacing ratio where significant force suppression can be achieved is found to become narrower as the Reynolds number increases in the laminar regime, but is insensitive to the diameter ratio. The numerical results for the case with six identical small control rods at Re=200 show that the lift fluctuation on the main cylinder can be suppressed significantly for a large range of spacing ratio and various diameter ratios, while the drag reduction on the main cylinder is also achieved simultaneously. The six-control-rod arrangement has shown better performance in flow control than the arrangements with less control rods, especially in terms of force reduction at various angles of attack.  相似文献   

18.
钝后缘风力机翼型的环量控制研究   总被引:2,自引:0,他引:2  
钝后缘风力机翼型具有结构强度高、对表面污染不敏感等优点,但其较大的阻力系数使得翼型的整体气动特性不够理想. 利用环量控制方法对钝后缘风力机翼型进行了流动控制,以改善钝后缘风力机翼型的气动特性,减弱尾迹区脱体涡强度. 通过对钝后缘风力机翼型环量控制方法进行相关的数值模拟,对比研究了环量控制方法的增升减阻效果, 研究了环量控制下翼型升阻力特性随射流动量系数的变化规律,并对不同射流动量系数下环量控制方法的气动品质因子和控制效率进行了分析. 研究结果表明:环量控制方法能够大幅提升钝后缘风力机翼型的升力系数,同时有效地降低翼型的阻力系数; 翼型的升力系数随射流动量系数的增大而增大,表现出很明显的分离控制阶段和超环量控制阶段的变化规律; 射流能耗的功率系数随射流动量系数的增大而增大,且增长速率逐渐增大;实施环量控制方法后叶片的输出功率同样随射流动量系数增大而增大,但增长速率逐渐降低. 总体来说,环量控制方法可以有效地改善钝后缘风力机翼型的气动特性以及功率输出特性,在大型风力机流动控制中具有很好的应用前景.   相似文献   

19.
This study experimentally investigates the energy harvesting capabilities of an oscillating wing with a passively actuated trailing edge. The oscillation kinematics are composed of a combined heaving and forward pitching motions, where the pitching axis is well behind the wing center of mass. Passive actuation is attained by connecting the trailing edge with the wing body using a torsion rod. The degree of flexibility of the trailing edge is represented by the Strouhal number based on the trailing edge natural frequency. The trailing edge passive response is studied for oscillation Strouhal numbers of 0.017, 0.025 and 0.033. Instantaneous aerodynamic forces are measured in a closed loop wind tunnel at a Reynolds number of 40 000, based on the free stream velocity and the wing chord length. Measured results include the effective angle of attack induced by the trailing edge actuation as well as the lift and moment during the oscillation cycle. For the imposed kinematics in this study, the pitching motion has a positive contribution to the mean power output whereas the heaving motion has a relatively small but negative contribution. Additionally, by decreasing the natural frequency of the trailing edge closer to that of the imposed oscillation frequency, the magnitude of the lift and moment forces and hence the mean power output, increases. It is found that there exists a strong correlation between mean power output and the effective angle of attack, shown through the passive trailing edge response, resulting in an increase in energy harvesting potential.  相似文献   

20.
A study of turbulence evolution and spectra within and just outside the core of a trailing vortex is performed. The vortex is generated by a vortex generator consisting of four blades positioned orthogonally to each other with the same angle of attack and placed in a low-speed wind tunnel. A grid is placed upstream of the vortex generator to produce free-stream turbulence, which wraps around and interacts with the columnar vortex. Instantaneous measurements of the three velocity components are obtained using a miniature four-sensor hot-wire probe. The study focuses on the distribution of turbulence energy and Reynolds stress among the different spectral components of the flow at different positions across the vortex core and different axial positions along the tunnel. The effect of background grid turbulence on the spectral energy distribution of the vortex is examined in comparison to the vortex alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号