首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supercritical fluid extraction can be coupled with capillary gas chromatography (SFE-GC) using commercially-available on-column or split/splitless injection ports. While liquid solvent extractions require several hours or even days to perform, SFC-GC analyses can be completed in ≤ 1 hour including extraction, analyte concentration, and GC separation. SFE-GC yields chromatographic peak shapes that compare favorably with those obtained using conventional liquid solvent injections. Quantitative extraction and recovery of analytes is usually achieved in 10 minutes, and maximum sensitivity is obtained since the extracted analytes can be quantitatively transferred into the GC column for cryogenic focusing prior to GC analysis. SFE-GC analysis of a variety of organic pollutants from environmental solids and sorbent resins, and flavor and fragrance compounds from food products will be discussed.  相似文献   

2.
建立了分析型超临界流体萃取(SFE)技术通过界面与气相色谱直接偶合分析中药吴茱萸化学成分的方法,样品不经预处理。讨论了界面设计及其应用中的一些问题。列出了吴茱萸某些化学成分的GC-MS鉴定结果。  相似文献   

3.
Large volume injection (LVI) is a prerequisite of modern gas chromatographic (GC) analysis, especially when trace sample components have to be determined at very low concentration levels. Injection of larger than usual sample volumes increases sensitivity and/or reduces (or even eliminates) the need for extract concentration steps. Also, an LVI technique can serve as an interface for on-line connection of GC with a sample preparation step or with liquid chromatography. This article reviews the currently available LVI techniques, including basic approaches to their optimization and important real-world applications. The most common LVI methods are on-column and programmed temperature vaporization (PTV) in solvent split mode. Newer techniques discussed in this article include direct sample introduction (DSI), splitless overflow, at-column, and "through oven transfer adsorption desorption" (TOTAD).  相似文献   

4.
Sampling techniques for practical quantitative capillary GC have to meet certain principal requirements. Both the absolute and the relative peak areas (e.g. column loads) must be reproducible with high precision and at high accuracy; discrimination of certain constituents according to their volatility should not take place on sampling. On the basis of systematic studies, the three most reliable sampling techniques used for GC analyses with the aim of achieving precise and accurate quantitative data proved to be the following: On-column, injection, splitless PTV injection, and an optimized version of split sampling called “cooled needle split” injection. The on-column technique can be optimized by using precolumns with wider internal diameters and without stationary phase coatings to overcome the problems of large liquid sampling volumes and for automation. The PTV technique should only be used in the splitless mode because discrimination cannot be suppressed completely with the split mode. All three of the techniques can be operated automatically, either to avoid “human interference”, i.e. to improve precision or for unattended operation to save man-power.  相似文献   

5.
A programmed temperature vaporizer (PTV) injection technique has been recently implemented in our laboratory. In present paper its performance is compared with other GC injection techniques commonly used in trace analysis of organic contaminants. Twenty-six pesticides representing different chemical classes were selected for the study. This group comprised compounds typically subjected to discrimination in the injection port of the gas chromatograph, e.g., polar organophosphorus pesticides and thermolabile carbamates. In the first set of experiments standards in pure solvent were injected into GC systems employing different types of injection, i.e., (i) on-column, (ii) pulsed splitless, (iii) PTV solvent split, (iv) PTV splitless, and the responses of analytes were compared. Discrimination of troublesome compounds was significantly decreased with the application of PTV solvent split injection. In the second set of experiments repetitive injections of purified wheat samples were performed, with aims to evaluate the long-term stability of responses, as well as matrix effects in different stages of system contamination for each injection technique. The tolerance of the GC system to co-injected matrix components was increased in the order: on-column相似文献   

6.
The dependence of the programmed-temperature solvent split sampling technique using a PSS (programmed-split/splitless) injection mode on different variables affecting the introduction of large sample volumes for a mixture of alkanes in capillary GC was evaluated. Apart from the studies found in the literature on different factors such as speed of injection. presence of adsorbent in the liner, internal diameter of the liner, initial and final injector temperature, split flow-rate and initial split time, affecting the chromatographic signal of different compounds, others were studied whose influence has not been considered until now. They include length of the microsyringe needle, adsorbent distribution in the liner, injection volume on analyte discrimination, speed of injector heating, time which the column stays at the initial temperature and time that the injector stays at the final temperature. Once finalised, the study of the PSS injection mode was compared with the conventional mode of gas chromatography splitless injection, and found that the proposed method increases sensitivity in GC trace analysis. Finally, the application of both injection modes in the determination of aliphatic hydrocarbons was tested in an atmospheric particulate sample.  相似文献   

7.
A. Kaufmann 《Chromatographia》1997,46(5-6):275-279
Summary A standard GC split/splitless injector was sealed with an airlock. The carrier gas and the sample were introduced through this valve. Such a configuration efficiently prevents an injector overflow. Injections up to 50 μL were made. An almost quantitative analyte and solvent transfer was observed, with only a minimal discrimination, of even volatile analytes. The use of an early vapor exit permitted a high initial liner flow and therefore a fast sample transfer.  相似文献   

8.
An experimental injection port has been designed for split or splitless sample introduction in capillary gas chromatography; the inlet uses electronic pressure control, in order that the column head pressure may be set from the GC keyboard, and the inlet may be used in the constant flow or constant pressure modes. Alternatively, the column head pressure may be programmed up or down during a GC run in a manner analogous to even temperature programming. Using electronic pressure control, a method was developed which used high column head pressures (high column flow rates) at the time of injection, followed by rapid reduction of the pressure to that required for optimum GC separation. In this way, high flow rates could be used at the time of splitless injection to reduce sample discrimination, while lower flow rates could be used for the separation. Using this method, up to 5 μl of a test sample could be injected in the splitless mode with no discrimination; in another experiment, 2.3 times as much sample was introduced into the column by using electronic pressure programming. Some GC peak broadening was observed in the first experiment.  相似文献   

9.
Two different injectors, a split/splitless injector and a programmed temperature vaporizer (PTV) injector were investigated as the interface in on-line supercritical fluid extraction (SFE)-capillary gas chromatography (cGC). The parameters affecting the chromatographic peak shapes as well as the quantitative performance of the interfaces in on-line SFE-cGC were identified and studied. Particular attention was paid to the case where modified extraction fluids were used. Experiments were performed on two different samples. The first sample consisted of PAHs spiked on sand at different concentration levels. The other sample was a polymeric material.  相似文献   

10.
In this work, two narrow-bore capillary columns with different internal diameters (I.D.) 0.15 mm (15 m length, 0.15 microm film thickness) and 0.10 mm (10 m length, 0.10 microm film thickness) with the same stationary phase (5% diphenyl 95% dimethylsiloxane), phase ratio and separation power were compared with regard to their advantages, practical limitations and applicability in fast GC on commercially available instrumentation. The column comparison concerns fast GC method development, speed and separation efficiency, the sample transfer into the column utilizing split and splitless inlet, sample capacity, detection (analysing compounds of a wide range of polarities and volatilities--even n-alkanes C16-C28 and selected pesticides) and ruggedness (in the field of ultratrace analysis of pesticide residues in real matrix). Under conditions corresponding to speed/separation efficiency trade-off 0.10 mm I.D. versus 0.15 mm I.D. column provides a speed gain of 1.74, but all other parameters investigated were better for the 0.15 mm I.D. column concerning more efficient sample transfer from inlet to the column using splitless injection, no discrimination with split injection. Better sample capacity (three times higher for the 0.15 mm than for the 0.10 mm I.D. column) resulted in improved ruggedness and simpler fast GC-MS method development.  相似文献   

11.
Interlaboratory comparisons for the analysis of mineral oil have indicated that many laboratories have problems in producing data of acceptable quality, mainly because of variations in the gas chromatographic settings used in the determination. A D-optimal design was therefore utilized to study the effects of six different GC operating settings on the GC performance criterion proposed by ISO and CEN draft standards ISO/FDIS 16703:2004 and CEN prEN 14039:2004:E for total petroleum hydrocarbon (TPH) determination. Both qualitative and quantitative factors were investigated. The results indicate that the performance criterion can only be achieved if the splitless injection settings are carefully optimized. Otherwise mass discrimination readily affects the validity of the results. The most critical factors affecting GC performance were the inlet liner design, inlet temperature and injection volume. The methods, however, were robust with respect to small changes in split vent time, GC column flow and FID temperature. The results show that non-discriminating splitless injection can only be obtained by optimizing the injector settings with respect to the significant factors. The main conclusion that can be drawn is that, if no further standardization is to be given for TPH determination by GC-FID, then a proper estimate of the expanded uncertainty should be appended to the TPH results. Only then can the reliability of the TPH results be guaranteed and further justification thus gained to support the end-use of the data.  相似文献   

12.
A new configuration for coupling a purge-and-trap unit to a capillary column gas chromatograph via a cryogenic focusing interface has been developed. In this configuration, the precolumn of the cryogenic focusing interface was inserted through the septum of a split/splitless injection port where it served as both sample transfer and carrier gas supply lines. The injection port of the gas chromatograph was modified by plugging the carrier gas and the septum purge lines. This configuration allowed for the desorption of analytes at high flow rates while maintaining low, analytical-column flow rates which are necessary for optimum capillary column operation. The capillary column flow rate is still controlled by the column backpressure regulator. Chromatograms of purgeable aromatics exhibited improved resolution, especially for early eluting components compared to those obtained by direct liquid injection using the normal splitless injection mode. Quantitative sample transfer to the analytical column afforded excellent linearity and reproducibility of compounds studied.  相似文献   

13.
This paper describes the design of a new, versatile, and low-cost on-line LC-GC interface that allows the fast and reliable introduction of large sample volumes onto a capillary GC column. The sample introduction procedure consists successively of: evaporation of the entire sample (LC fraction), selective removal of the solvent and simultaneously cold-trapping of the solutes, splitless transfer of the solutes to the GC column, on-column focusing, GC separation and detection. Quantitative and qualitative aspects of various experimental parameters are evaluated and optimum conditions are reported. The applicability of the method is demonstrated on a synthetic aqueous sample of chlorinated pesticides.  相似文献   

14.
Ng CI  Zhang X 《Talanta》2011,85(4):1766-1771
In this work, an analytical method for GC using direct solid sample introduction was developed to tackle the problem regarding quick detection of pesticide residue in crops and large-scale screening of samples. 10 mg of the crop solid sample without sample pre-treatment was directly introduced into a modified split/splitless injector for GC analysis. A split/splitless injector was modified to quickly remove oxygen and low boiling-point matrices of the sample. The whole sampling procedure was simple and it required less than 5 min. The experimental parameters including injector-port temperature, removal of oxygen and low boiling point matrices, size and the amount of the solid sample, oven temperature program were studied. Satisfactory recoveries of 6 pesticides (methyl parathion, fenitrothion, aldrin, dieldrin, endosulfan, o,p′-DDT) were obtained in maize and rice sample. Relative standard deviation was less than 15%. Experimental results showed that the proposed method was quick and reliable for pesticide residues analysis in crops.  相似文献   

15.
王亚韡  张庆华  江桂斌  贺卿 《色谱》2007,25(1):21-24
利用大体积进样技术(large volume injection,LVI),结合气相色谱-质谱方法对二英的测定效果进行了研究。同时与传统分流/不分流进样技术进行了对比。对进样体积为1,5,10,25,50和100 μL的色谱图进行了分析。研究表明使用大体积进样方式,在不影响色谱分离度的同时,大幅度提高了分析灵敏度。通过对土壤样品的检测,证明该方法可以用于环境样品的实际测定。  相似文献   

16.
The constituents in synthetic alkylbenzene samples were analyzed by a comprehensive capillary liquid chromatography (micro-LC) x capillary gas chromatography (CGC). The micro-LC separates the mixture into aliphatic compounds, monosubstituted alkylbenzenes, multisubstituted alkylbenzenes and binuclear aromatic compounds. Each fraction from a single micro-LC injection is stored in turn in a multiloop interface, and then transferred online into CGC sequentially with large volume in-column splitless injection technique for detailed analysis. No sample discrimination was found with this coupling and injection technique. Both the micro-LC column dimension and transfer speed of fraction from interface to CGC were optimized. Quantitative results and the carbon number distribution of each chemical class are obtained by using the comprehensive micro-LC x CGC with flame ionization detection. The reproducibility of peak area is better than 2% RSD.  相似文献   

17.
A cold on-column injection system for capillary gas chromatography (GC) applications was constructed. It was based upon a conventional split/splitless capillary GC inlet, which in turn was a modification of a conventional packed GC column inlet. The heart of the laboratory constructed cold on-column inlet design was a disposable pyrex micro-sampling pipet, which functioned as a needle guide for sample injection. The sample was injected through a traditional GC septum. Construction of the injection system is described and applications are illustrated by separations of a variety of complex mixtures.  相似文献   

18.
The combination of on-line methylation using trimethylsulfonium hydroxide with large volume injection of 100 μL was evaluated for the analysis of organic acids and phenols in water. Solvent split injection was applied with complete evaporation of the solvent before analytes were transferred onto the GC column. Despite complete solvent removal, losses were very low compared to conventional splitless injection even for volatile acidic compounds such as propionic acid and phenol. This is explained by intermediate formation of low volatility trimethylsulfonium salts of the analytes which were held in the injector for long evaporation times of up to 10 min, if the evaporation temperature was as low as 10°C. Using a simple liquid/liquid extraction procedure, volatile fatty acids, dicarboxylic acids, benzoic acids and phenols could be detected in 5 mL of water at concentrations of 0.04–0.1 μmol/L with GC/MS in full scan mode. Lactic, pyruvic, and also malonic acids could only be detected at higher levels because of their limited extractability from water as well as their poorer methylation yields. The method provides an easy way to sensitively detect acidic compounds of medium to high volatility in water. It was applied for screening of organic acids and phenols in batch cultures of anaerobic bacteria of which one example is shown.  相似文献   

19.
在气相色谱分析萘、联苯、苊、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、屈艹、苯并(a)芘和匹艹的研究过程中,以有效塔板数(neff)作为考察指标对新型色谱操作模式——程序升温升压操作条件进行了优化。通过对Kovats保留指数体系和Lee 保留指数体系在不同操作模式下的对比实验表明,在脉冲进样和程序升压等新型色谱操作条件下,Lee 保留指数体系仍能够满足对多环芳烃定性分析的要求, 前者则不能。  相似文献   

20.
A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative transfer of solutes to the seperation column. The problems caused by impurities in the extraction fluid in on-line SFE-GC are discussed. Simple methods are described for the purification of commercially available carbon dioxide. The trapping efficiency of the PTV injector is studied. Applications of the SFE-PTV-GC system are given for the analysis of polymer anti-degradants, polar compounds, and samples with environmental relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号