首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The layered crystal MoS(2) has been proposed as an alternative to noble metals as the electrocatalyst for the hydrogen evolution reaction (HER). However, the activity of this catalyst is limited by the number of available edge sites. It was previously shown that, by using an imidazolium ionic liquid as synthesis medium, nanometre-size crystal layers of MoS(2) can be prepared which exhibit a very high number of active edge sites as well as a de-layered morphology, both of which contribute to HER electrocatalytic activity. Herein, it is examined how to control these features synthetically by using a range of ionic liquids as synthesis media. Non-coordinating ILs with a planar heterocyclic cation produced MoS(2) with the de-layered morphology, which was subsequently shown to be highly advantageous for HER electrocatalytic activity. The results furthermore suggest that the crystallinity, and in turn the catalytic activity, of the MoS(2) layers can be improved by employing an IL with specific solvation properties. These results provide the basis for a synthetic strategy for increasing the HER electrocatalytic activity of MoS(2) by tuning its crystal properties, and thus improving its potential for use in hydrogen production technologies.  相似文献   

2.
The layered crystal MoS2 has been proposed as an alternative to noble metals as the electrocatalyst for the hydrogen evolution reaction (HER). However, the activity of this catalyst is limited by the number of available edge sites. It was previously shown that, by using an imidazolium ionic liquid as synthesis medium, nanometre‐size crystal layers of MoS2 can be prepared which exhibit a very high number of active edge sites as well as a de‐layered morphology, both of which contribute to HER electrocatalytic activity. Herein, it is examined how to control these features synthetically by using a range of ionic liquids as synthesis media. Non‐coordinating ILs with a planar heterocyclic cation produced MoS2 with the de‐layered morphology, which was subsequently shown to be highly advantageous for HER electrocatalytic activity. The results furthermore suggest that the crystallinity, and in turn the catalytic activity, of the MoS2 layers can be improved by employing an IL with specific solvation properties. These results provide the basis for a synthetic strategy for increasing the HER electrocatalytic activity of MoS2 by tuning its crystal properties, and thus improving its potential for use in hydrogen production technologies.  相似文献   

3.
Tuning the surface strain of heterogeneous catalysts is recognized as a powerful strategy for tailoring their catalytic activity. However, a clear understanding of the strain effect in electrocatalysis at single-particle resolution is still lacking. Here, we explore the electrochemical hydrogen evolution reaction (HER) of single Pd octahedra and icosahedra with the same surface bounded {111} crystal facet and similar sizes using scanning electrochemical cell microscopy (SECCM). It is revealed that tensilely strained Pd icosahedra display significantly superior HER electrocatalytic activity. The estimated turnover frequency at −0.87 V vs RHE on Pd icosahedra is about two times higher than that on Pd octahedra. Our single-particle electrochemistry study using SECCM at Pd nanocrystals unambiguously highlights the importance of tensile strain on electrocatalytic activity and may offer new strategy for understanding the fundamental relationship between surface strain and reactivity.  相似文献   

4.
In this study, NiCu composite coatings were electrochemically deposited on a copper electrode (Cu/NiCu) and characterized by atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM) and scanning electrochemical microscopy (SECM) techniques in view of their possible applications as electrocatalytic materials for the hydrogen evolution reaction (HER). The HER activity of the prepared electrodes were studied in 1 M KOH solution by cathodic current–potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that, the NiCu coating has a porous structure and good electrocatalytic activity for the HER in alkaline medium. The HER activity of the Cu/NiCu electrode was higher than uncoated (Cu) and Ni coated (Cu/Ni) copper electrodes. Its catalytic activity was related to the porosity as well as synergistic interaction of Ni and Cu.  相似文献   

5.
采用电沉积法获得Ni、Ni-Fe和Ni-Fe-C合金镀层电极, 在90 °C模拟海水(0.5 mol·L-1 NaCl, pH=12)的稳态极化曲线表明Ni-Fe-C合金电极具有最好的析氢催化性能. 通过扫描电子显微镜(SEM)观察电极表面形貌、X射线衍射(XRD)与透射电子显微镜(HRTEM)分析合金的晶体结构, 发现电极材料的晶粒尺寸影响析氢催化性能, 晶粒尺寸越小析氢催化活性越好. 用电化学阻抗方法(EIS)研究电极析氢催化性能的本质原因, 结果表明电极表面活性点数目和电极的本质电催化活性对合金电极析氢催化活性有重要的影响.  相似文献   

6.
在电催化析氢反应中,Ni Mo(O)催化剂在高电流密度下通常表现为极低的过电位。然而,该优异电催化性能的真正起源尚不明确。一个新的角度,即研究钼镍催化剂结构/性能演变的规律,能够帮助深入理解镍钼催化剂具有高活性的本质原因。基于此,本文详细阐述了含有结晶水的钼酸镍的脱水和氧化过程,在随后的还原处理中,该演变过程也被证实对于衍生不同的催化剂相结构具有重要作用。文中通过热重-差热分析以及程序升温氢气还原的方法探究电催化剂的特征相结构演变过程。同时,借助X射线衍射仪、拉曼光谱和高分辨透射电子显微镜分析确认催化剂物相。原位电化学X射线衍射分析提供了电催化剂在反应过程中的晶相结构。本文合成了具有不同主体相结构的钼镍催化剂:MoNi4,β-NiMoO4和α-NiMoO4,它们的析氢反应活性具有显著差异。其中,β-NiMoO4作为主体相结构的NiMoO4-400air-H2催化剂在碱性水还原反应中显现出最差的析氢性能;与之相比,α-NiMoO4作为主...  相似文献   

7.
在纳米晶Co-Mo/Ni复合电极上的析氢反应   总被引:4,自引:0,他引:4  
采用复合电镀的方法将不同球磨时间制备的高催化活性的纳米晶Co-Mo合金粉直接镀在电极表面,用稳态极化曲线及交流阻抗技术测试了这些电极析氢的电化学活性,并用X射线衍射、透射电镜及X射线光电子能谱、扫描电镜监测了Co-MO合金粉的物相结构、晶粒尺寸和复合镀层的成份、形貌,实验结果表明,Co-Mo纳米晶合金粉有较高的析氢催化活性。球磨使钴钼粉合金化成为纳米晶,一方面增加了复合镀层的真实表面积,另一方面由于纳米晶合金具有高比例的表面活性原子,致使析氢活化能降低,加快了析氢反应,研究表明在不太高温度下,电化学脱附的活化能和整个析氢反应的活化能一致。说明电化学脱附为速度控制步骤。  相似文献   

8.
Tailoring of new hydrogen evolution reaction (HER) electrocatalyst with earth abundant elements is important for large scale water splitting and hydrogen production. In this work, we present a simple synthetic method for incorporating iron phosphide (FeP) particles into three‐dimensional (3D) porous graphene aerogel (GA) structure. The FeP formed in porous 3D GA (FeP/GA) is derived from electroactive Fe hexacyanoferrate (FeHCF). The advantage of incorporating FeP, in the porous 3D graphene network enables high accessibility for HER. As synthesized FeP/GA catalyst shows good electrocatalytic activity for HER in both acidic and alkaline solutions. The developed method can be useful for synthesizing metal hexacyanoferrate derived mono/bimetal phosphide catalyst in porous 3D graphene aerogels.  相似文献   

9.
The nanoparticle-based electrocatalysts’ performance is directly related to their working conditions. In general, a number of nanoparticles are uncontrollably fixed on a millimetre-sized electrode for electrochemical measurements. However, it is hard to reveal the maximum electrocatalytic activity owing to the aggregation and detachment of nanoparticles on the electrode surface. To solve this problem, here, we take the hydrogen evolution reaction (HER) catalyzed by palladium nanoparticles (Pd NPs) as a model system to track the electrocatalytic activity of single Pd NPs by stochastic collision electrochemistry and ensemble electrochemistry, respectively. Compared with the nanoparticle fixed working condition, Pd NPs in the nanoparticle diffused working condition results in a 2–5 orders magnitude enhancement of electrocatalytic activity for HER at various bias potential. Stochastic collision electrochemistry with high temporal resolution gives further insights into the accurate study of NPs’ electrocatalytic performance, enabling to dramatically enhance electrocatalytic efficiency.  相似文献   

10.
Common‐metal‐based single‐atom catalysts (SACs) are quite difficult to design due to the complex synthesis processes required. Herein, we report a single‐atom nickel iodide (SANi‐I) electrocatalyst with atomically dispersed non‐metal iodine atoms. The SANi‐I is prepared via a simple calcination step in a vacuum‐sealed ampoule and subsequent cyclic voltammetry activation. Aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and synchrotron‐based X‐ray absorption spectroscopy are applied to confirm the atomic‐level dispersion of iodine atoms and detailed structure of SANi‐I. Single iodine atoms are found to be isolated by oxygen atoms. The SANi‐I is structural stable and shows exceptional electrocatalytic activity for the hydrogen evolution reaction (HER). In situ Raman spectroscopy reveals that the hydrogen adatom (Hads) is adsorbed by a single iodine atom, forming the I‐Hads intermediate, which promotes the HER process.  相似文献   

11.
A novel, cost‐effective, and simple electrocatalyst based on a Pt‐modified glassy carbon electrode (GCE), using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, is reported. Am‐phiphilic CTAB molecules were adsorbed on GCE by immersion in a CTAB solution. The positively charged hydrophilic layer, which consisted of small aggregates of average size less than 100 nm, was used for accumulation and complexation of [PtCl6]2? anions by immersing the electrode in K2PtCl6 solution. The modified electrode was characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, impedance spectroscopy, and electrochemical methods. The electrocatalytic activity of the Pt particles in the hydrogen evolution reaction (HER) was investigat‐ed. The results show that the CTAB surfactant enhances the electrocatalytic activity of the Pt parti‐cles in the HER in acidic solution.  相似文献   

12.
王红森  吴仲达  林文廉  丁晓纪 《化学学报》1994,52(11):1053-1057
钛基体在能量40keV下,离子注入1×10^1^6~1×10^1^8Pd^+/cm^2.在30%的KOH溶液中,研究了这些电极对氢和氧析出的电催化性能.结果表明, 离子注入电极的催化活性明显地优于未注入的钛基体,并随着离子注入剂量的增大,催化活性增大. 由极化测量求得有关动力学参数.这些数据表明,用高剂量钯离子注入的钛电极, 其电化学性能与钯电极相似.根据AES和XPS数据,讨论了注入电极表面的组成  相似文献   

13.
Earth-abundant NiMo-oxide nanostructures were investigated as efficient electrocatalytic materials for the hydrogen evolution reaction (HER) in acidic media. Synthesis and non-synthesis parameters were thoroughly studied. For the non-synthesis parameters, the variation in Nafion loading resulted in a volcano-like trend, while the change in the electrocatalyst loading showed that the marginal benefit of high loadings attenuates due to mass-transfer limitations. The addition of carbon black to the electrocatalyst layer improved the HER performance at low loadings. Different carbon black grades showed a varying influence on the HER performance. Regarding the synthesis parameters, a calcination temperature of 500 °C, a calcination time between 20 and 720 min, a stoichiometric composition (Ni/Mo = 1), an acidic precursor solution, and a fuel-lean system were conditions that yielded the highest HER activity. The in-house NiMoO4/CB/Nafion electrocatalyst layer was found to offer a better long-term performance than the commercial Pt/C.  相似文献   

14.
《中国化学快报》2022,33(9):4367-4374
Rational design and building of high efficiency, secure and inexpensive electrocatalyst is a pressing demand and performance to promote sustainable improvement of hydrogen energy. The bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution response (HER) with high catalytic performance and steadiness in the equal electrolyte are extra treasured and meaningful. Herein, a unique three-dimensional (3D) structure electrocatalyst for NiCo2S4 growing on the flower-like NiFeP was designed and synthesized in this study. The results show that the flower-like NiCo2S4/NiFeP/NF composite electrocatalyst has large specific surface area, appropriate electrical conductivity, and greater lively websites uncovered in the three-dimensional structure, and affords extraordinary electrocatalytic overall performance for the ordinary water splitting. In alkaline solution, the OER and HER overpotentials of NiCo2S4/NiFeP/NF only need 293 mV and 205 mV overpotential to provide the current densities of 100 mA/cm2 and 50 mA/cm2, respectively. This high electrocatalytic activity exceeds the catalytic activity of most nickel-iron based electrocatalysts for OER and HER process. Accordingly, the optimized NiCo2S4/NiFeP/NF sample has higher stability (24 h) at 1.560 and 10 mA/cm2, which extensively speeds up the overall water splitting process. In view of the above performance, this work offers a fine approach for the further improvement of low fee and excessive effectivity electrocatalyst.  相似文献   

15.
层状二硫化钼由于具有独特的物理化学特性, 在电化学制氢领域受到广泛关注. 二硫化钼的氢惰性表面导致其在酸性和碱性电解液中的析氢活性都比铂差. 将单原子锚定在二硫化钼中能够有效活化惰性的基面,促使其成为先进的析氢电催化剂. 本文从单原子掺杂的二硫化钼的结构出发, 探讨了单原子在提升活性方面的具体机制, 总结了关于单原子掺杂的二硫化钼的制备方法、 表征手段和最新的研究进展, 以及单原子掺杂所产生的缺陷对于活性提升的重要作用. 最后, 基于单原子掺杂二硫化钼在析氢反应中的最新进展, 总结了该领域中相关催化剂的设计思想和主要挑战.  相似文献   

16.
Modulating the local electronic state of metal compounds through interfacial interaction has become a key method for manufacturing high-performance hydrogen evolution reaction (HER) electrocatalysts. The electron-rich active sites can promote the adsorption of hydrogen, which accelerates the Volmer step and thereby enhances the electrocatalytic performance of HER. Here, we found that the strong interfacial interaction between TiO nanodots (TiO/Co−S) and Co−S nanosheets could advantageously improve the performance toward HER of electrocatalyst. Meanwhile, XPS results showed that modulating the local electronic structure of the TiO nanodots produces electron-rich regions on Co. As a result, the overpotential of the TiO/Co−S nanocomposite at 10 mA cm−2 was 107 mV, and the Tafel slope was 83.3 mV dec−1. This study focused on the effect of the solid-solid interface on the local electronic structure of the catalytic metal active sites and successfully improved the catalytic activity of transition metal materials in HER catalysis.  相似文献   

17.
The development of active,low-cost and durable bifunctional electrocatalysts toward both oxygen evolution reaction(OER) and hydro gen evolution react ion(HER) a re important for overall water splitting.Here,well-defined arrays of vanadium-iron bimetal organic frameworks(VFe-MOF) with controllable stoichiometry have been successfully prepared on nickel foam(NF).The as-fabricated VFe-MOF@NF electrode exhibits excellent electrocatalytic activity and durability for OER and HER in alkaline medium.The material's overpotentials of 10 mA/cm~2 are 246 mV for OER and 147 mV for HER,respectively.The electrolyzer made from the VFe-MOF@NF electrodes as both the cathode and anode in 1 mol/L KOH needs only a voltage of 1.61 V to reach a current density of 10 mA/cm~2.The superior performance of VFeMOF@NF can be attributed to the morphological control and electronic regulation of the bimetals,that is,1) the exposure of the active sites at electrocatalyst/electrolyte interfaces due to the array structure;2)the synergistic effect of vanadium and iron metals on electro-catalyzing the overall water splitting.  相似文献   

18.
《中国化学快报》2022,33(8):3752-3756
Hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) have been considered as two critical processes in the field of electrocatalytic water-splitting for hydrogen production and fuel cells. However, the sluggish reaction kinetics of HER and ORR required efficient electrocatalyst such as Pt to promote such process. Transition metal phosphides (TMPs) exhibit great potential to replace noble metal electrocatalysts to accelerate HER and ORR due to their high activity and easy availability. Herein, a highly-efficient bifunctional CoP electrocatalyst for HER and ORR, featuring a unique core-shell structure decorated on nitrogen-doped carbon matrix was designed and constructed via etching a cobalt-based zeolitic imidazolate framework (ZIF-67) with phytic acid (PA) followed by pyrolysis treatment (PA-ZIF-67–900). Experimental results revealed that the pure-phase single-crystalline CoP exhibited outstanding electrocatalytic performance in HER and ORR, superior to Co(PO3)2 in PA-ZIF-67–700, hybrid phase of Co(PO3)2 and CoP in PA-ZIF-67–800 and Co2P-doped CoP in PA-ZIF-67–1000. To reach the current density of 10 mA/cm2 the as-synthesized CoP required an overpotential of 120 mV for HER in 1 mol/L KOH and half-wave potential of 0.85 V in O2-saturated 0.1 mol/L KOH. This work present new clue for construction of efficient and bifunctional electrocatalyst in the field of energy conversion and storage  相似文献   

19.
Highly efficient,cost-effective,and durable electrocatalysts for hydrogen evolution reaction(HER)in water splitting is crucial for ene rgy conversion and sto rage.Herein,we report NiCoP 1D nanothorn arrays grown on 3D porous Ni film current collectors(Ni/NiCoP)as the novel electrocatalytic electrodes.The 3D hierarchically porous nickel films containing large 7±2μm pores and small pores less than 1μm are obtained through using hydrogen bubbles dynamic template method.The NiCoP 1D nanothorns are about 70 nm in diameter and 4-8μm in length.The porous Ni/NiCoP electrocatalytic electrodes demonstrate much higher catalytic activity and remarkable stability for long-term HER.The excellent electrocatalytic performance might be attributed to the inherent nature of highly catalytic active NiCo bimetal phosphides and the unique architecture of 1D nanothorn active materials directly integrated on the 3D hierarchically porous metallic nickel conductive skeletons.The developed electrode has been fabricated to the integrated solar-driven seawater-splitting system.  相似文献   

20.
球磨形成的Ni-Mo纳米晶复合镀层上的析氢反应   总被引:13,自引:0,他引:13  
采用复合电镀的方法将不同球磨时间制备的高催化活性的纳米晶,Ni-Mo合金粉直接镀于电极表面,并用稳态极化曲线及交流阻抗技术测试了这些电极析氢的电化学活性,同时用X射线衍射,透射电镜及扫描电镜监测了Ni-Mo合金粉的物相结构,晶粒尺寸及复合电极表面的形貌,并初步探讨了这些复合电极的析氢机理,实验结果表明,球磨不仅可使镍钼粉合金化成为纳米晶,同时随着球磨时间的增加,纳米晶晶粒继续细化,电极的析氢催化活  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号