首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fe2O3 hematite (alpha) nanoparticles suspended in the liquid phase of the liquid crystal 4,4-azoxyanlsole (PAA) are cooled below the freezing temperature (397 K) in a 4000 G dc magnetic field. The in field solidification locks the direction of maximum magnetization of the particles parallel to the direction of the applied dc magnetic field removing the effects of dynamical fluctuations of the nanoparticles on the magnetic properties allowing a study of the intrinsic magnetic properties of the nanoparticles as well as the anisotropic behavior of the ferromagnetic resonance (FMR) signal. Freezing in PAA allows temperature-dependent measurements to be made at much higher temperature than previous measurements. The field position, line width and intensity of the FMR signal as a function of temperature as well as the magnetization show anomalies in the vicinity of 200 K indicative of a magnetic transition, likely the previously observed Morin transition shifted to lower temperature due to the small particle size. Weak ferromagnetism is observed below Tc in contrast to the bulk material where it is antiferromagnetic below Tc. The Raman spectrum above and below 200 K shows no evidence of a change in lattice symmetry associated with the magnetic transition.  相似文献   

2.
The single crystal of the new ternary compound Sm12Fe14Al5 was grown and its crystallographic and magnetic properties were investigated. Sm12Fe14Al5 has a hexagonal structure of the space group p-3m1 and shows ferromagnetism with a Curie temperature of 245 K. The easy direction of magnetization is parallel to the c-axis at temperatures between 245 and 85 K; however, it changes to the c-plane below 85 K through a first-order-like phase transition. No saturation is observed in the magnetization curve even under the applied field of 55 kOe at 5 K. Sm12Fe14Al5 seems to have a large coercive field at very low temperatures. The anisotropy field was estimated at 5 and 120 K and the saturation magnetization of low temperature phase is explained assuming a ferromagnetic coupling between Fe and Sm sublattices.  相似文献   

3.
We have investigated the magnetic, electrical transport and electron spin resonance (ESR) properties of polycrystalline Fe-doped manganite LaMn0.7Fe0.3O3+δ prepared by sol–gel method. A typical cluster-glass feature is presented by DC magnetization and AC susceptibility measurements and a sharp but shallow memory effect was observed. Symmetrical Lorentzian lines of the Mn/Fe spectra were detected above 120 K, where the sample is a paramagnetic (PM) insulator. When the temperature decreases from 120 K, magnetic clusters contributed from ferromagnetic (FM) interaction between Mn3+ and Mn3+/Fe3+ ions develop and coexist with PM phase. At lower temperature, these FM clusters compete with antiferromagnetic (AFM) ones between Fe3+ ions, which are associated with a distinct field-cooled (FC) effect in characteristic of cluster-glass state.  相似文献   

4.
The value of the effective magnetic anisotropy constant of the ferrimagnetic nanoparticles Zn0.15Ni0.85Fe2O4 embedded in a SiO2 silica matrix, determined through ferromagnetic resonance (FMR), is much higher than the magnetocrystalline anisotropy constant. The higher value of the anisotropy constant is due to the existence of surface anisotropy. However, even if the magnetic anisotropy is high, the ferrimagnetic nanoparticles with a 15% concentration, which are isolated in a SiO2 matrix, display a superparamagnetic (SPM) behavior at room temperature and at a frequency of the magnetization field equal to 50 Hz. The FMR spectrum of the novel nanocomposite (Zn0.15Ni0.85Fe2O4)0.15/(SiO2)0.85, recorded at room temperature and a frequency of 9.060 GHz, is observed at a resonance field (B0r) of 0.2285 T, which is substantially lower than the field corresponding to free electron resonance (ESR) (0.3236 T). Apart from the line corresponding to the resonance of the nanoparticle system, the spectrum also contains an additional weaker line, identified for a resonance field of ∼0.12 T, which is appreciably lower than B0r. This line was attributed to magnetic ions complex that is in a disordered structure in the layer that has an average thickness of 1.4 nm, this layer being situated on the surface of the Zn0.15Ni0.85Fe2O4 nanoparticles that have a mean magnetic diameter of 8.9 nm.  相似文献   

5.
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 and ferrimagnetic oxide/ferromagnetic metal CoFe2O4/CoFe2 nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe2O4/CoFe2 nanocomposite: (i) first, preparation of CoFe2O4 nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe2O4 nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe2O4 particles is about 16 nm. Mossbauer spectra revealed two sites for Fe3+. One site is related to Fe in an octahedral coordination and the other one to the Fe3+ in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe2O4. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe2 on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH)max of 1.22 MGOe was achieved at room temperature for CoFe2O4/CoFe2 nanocomposites, which is about 115% higher than the value obtained for CoFe2O4 precursor. The exchange coupling interaction and the enhancement of product (BH)max in nanocomposite CoFe2O4/CoFe2 are discussed.  相似文献   

6.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

7.
BiFe1−xNixO3 ceramic powders with x up to 0.10 have been prepared by the sol-gel technique. The band gap of BiFeO3 is 2.23 eV, and decreases to 2.09 eV for BiFe0.95Ni0.05O3 and BiFe0.90Ni0.10O3. The Mössbauer spectra show sextet at room temperature, indicating the magnetic ordering and the presence of only Fe3+ ions. Superparamagnetism with blocking temperature of 31 K for BiFe0.95Ni0.05O3 and 100 K for BiFe0.90Ni0.10O3 was observed. Enhanced magnetization at room temperature have been observed (1.0 emu/g for BiFe0.95Ni0.05O3 and 2.9 emu/g for BiFe0.90Ni0.10O3 under magnetic field of 10,000 Oe), which is one order larger than that of BiFeO3 (0.1 emu/g under magnetic field of 10,000 Oe). The enhanced magnetization was attributed to the suppression of the cycloidal spin structure by Ni3+ substitution and the ferrimagnetic interaction between Fe3+ and Ni3+ ions.  相似文献   

8.
Fe3O4 nanoparticle/organic hybrids were synthesized via hydrolysis using iron (III) acetylacetonate at ∼80 °C. The synthesis of Fe3O4 was confirmed by X-ray diffraction, selected-area diffraction, and X-ray photoelectron spectroscopy. Fe3O4 nanoparticles in the organic matrix had diameters ranging from 7 to 13 nm depending on the conditions of hydrolysis. The saturation magnetization of the hybrid increased with an increase in the particle size. When the hybrid contained Fe3O4 particles with a size of less than 10 nm, it exhibited superparamagnetic behavior. The blocking temperature of the hybrid containing Fe3O4 particles with a size of 7.3 nm was 200 K, and it increased to 310 K as the particle size increased to 9.1 nm. A hybrid containing Fe3O4 particles of size greater than 10 nm was ferrimagnetic, and underwent Verwey transition at 130 K. Under a magnetic field, a suspension of the hybrid in silicone oil revealed the magnetorheological effect. The yield stress of the fluid was dependent on the saturation magnetization of Fe3O4 nanoparticles in the hybrid, the strength of the magnetic field, and the amount of the hybrid.  相似文献   

9.
The magnetic properties of RE0.7Ca0.3Mn0.95Fe0.05O3 perovskite with rare-earth cations (RE=Sm and Gd) were investigated by means of X-ray diffraction, Mössbauer spectroscopy, and low temperature (4.2-266 K) magnetization measurements. Structural characterization of these compounds shows that they both have orthorhombic (Pbnm) structure. The Mössbauer spectra show clear evidence of local structural distortion of the Mn(Fe)O6 octahedron, which is based on the non-zero nuclear quadrupole interactions for high-spin Fe3+ ions. It was found that the local structural distortion increases significantly when Sm3+ is replaced by Gd3+. This distortion is attributed to the Jahn-Teller coupling strength as estimated from the Mössbauer effect results. The magnetic results indicate that the Curie temperature decreases as a result of replacing Sm by Gd. This is due to the decrease of the average A-site cationic radius 〈rA〉. The rapid increase of magnetization at low temperature indicates the magnetic ordering of rare earth ions at the A-site.  相似文献   

10.
ε-Fe3N nanoparticles synthesized by chemical vapor condensation (CVC) are covered with shells of disordered Fe3O4 phase, as observed by a transmission electron microscopy. The zero-field cooling and field cooling temperature dependence of magnetization, ac susceptibility as a function of frequency, magnetic hysteresis loops, and the temperature dependence of resistivity of the ε-Fe3N nanoparticles are systematically studied. The results indicate the existence of complex magnetic properties, such as superparamagnetic behavior, exchange bias, magnetic dipole interaction, and the possible coexistence of ferromagnetic and spin-glass-like states and/or disordered surface spins of the shells at low temperatures. The temperature dependence of resistivity ρ(T) for compacted ε-Fe3N nanoparticles in a temperature range of 110 K< T< 300 K can be well described by the mechanism of fluctuation-induced tunneling conduction, while that below 110 K can be ascribed to conducting electrons scattered by localized magnetic moments and impurity as well as the influence of freezing of spin-glass-like moments and/or disordered surface spins of the shells.  相似文献   

11.
In this work, electron magnetic resonance (EMR) spectroscopy and magnetometry studies were employed to investigate the origin of the observed room-temperature ferromagnetism in chemically synthesized Sn1?x Fe x O2 powders. EMR data clearly established the presence of two different types of signals due to the incorporated Fe ions: paramagnetic spectra due to isolated Fe3+ ions and broad ferromagnetic resonance (FMR) spectra due to magnetically coupled Fe3+ dopant ions. EMR data analysis and simulation suggested the presence of high-spin (S = 5/2) Fe3+ ions incorporated into the SnO2 host lattice both at substitutional and at interstitial sites. The FMR signal intensity and the saturation magnetization M s of the ferromagnetic component increased with increasing Fe concentration. For Sn0.953Fe0.047O2 samples, well-defined EMR spectra revealing FMRs were observed only for samples prepared in the 350–600°C range, whereas for samples prepared at higher annealing temperatures up to 900°C, the FMRs and saturation magnetization were vanished due to diffusion and eventual expulsion of the Fe ions from the nanoparticles, in agreement with data obtained from Raman and X-ray photoelectron spectroscopy.  相似文献   

12.
Thermo-gravimetric, differential scanning calorimetry and comprehensive 57Fe Mössbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co0.2Fe0.8)72.5Si12.5B15 micro-wires have been recorded. The Curie temperature of the amorphous phase is TC(amorp) ∼730 K. The analysis of the Mössbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Mössbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe2B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe2B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating.  相似文献   

13.
Co1−xNix/2Srx/2Fe2O4 (x=0–0.5 in steps of 0.1) ferrite nanoparticles have been synthesized at room temperature, without calcination, using a reverse micelle process. The site preference was determined by Mössbauer spectroscopy at 300 K. The hyperfine parameters were obtained, for the whole series of solid solutions. For the X≤0.20 samples, the spectra were fitted with two discrete sextets and for the X>0.20 samples, a magnetic hyperfine field distribution and a doublet were also imposed in the fit procedure. Hysteresis loops were measured using a superconducting quantum interference device magnetometer at 2 K and 300 K. The results indicate that the relative decrease in saturation magnetization of nanoparticles compared to the submicron particles could be attributed to a surface spin termination and disorder. Magnetic dynamics of the nanoparticles was studied by the measurement of ac magnetic susceptibility versus temperature at different frequencies and it is found that the results are well described by the Vogel–Fulcher model.  相似文献   

14.
The crystal and magnetic structures of KFeO2 have been determined by neutron and X-ray powder-diffraction and Mössbauer-effect techniques. The crystal structure at 4.2 K and 300 K is orthorhombic and the magnetic space group is Pbca'. The Fe3+-ions in this structure are tetrahedrally coordinated by oxygen ions, and each Fe3+-ion has a magnetic moment which is antiferromagnetically coupled to the moments of four Fe3+-neighbours. The direction of the moments is parallel to the a-axis. A crystal phase transition has been observed near the Néel temperature?960 K.  相似文献   

15.
Nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4) have been prepared by a sol-gel method where the ultra-sonication technique has been adopted to reduce the agglomeration effect among the nanoparticles. The samples were heat-treated at three different temperatures and the formation of the nanocrystalline phase was confirmed by X-ray diffractograms (XRD). The average particle size of each sample has been estimated from the (311) peak of the XRD pattern using the Debye-Scherrer formula and the average sizes are in the range of 10-21 nm. The average particle size, crystallographic phase, etc. of some selected samples obtained from the high-resolution transmission electron microscopy are in agreement with those estimated from the XRD patterns. Static magnetic measurements viz., hysteresis loops, field cooled and zero field cooled magnetization versus temperature curves of some samples carried out by SQUID in the temperature range of 300 to 5 K clearly indicate the presence of superparamagnetic (SPM) relaxation of the nanoparticles in the samples. The maximum magnetization of the SPM sample annealed at 500 °C is quite high (68 Am2/Kg) and the hysteresis loops are almost square shaped with very low value of coercive field at room temperature (827.8 A/m). The particle size, magneto-crystalline anisotropy, etc. have been estimated from the detailed theoretical analysis of the static magnetic data. The dynamic magnetic behavior of the samples was also investigated by observing the ac hysteresis loops and magnetization versus field curves with different time windows at room temperatures. The different soft magnetic quantities viz., coercive field, magnetization, remanance, hysteresis losses, etc. were extracted from dynamic measurements. Dynamic measurements confirmed that the samples are in their mixed state of SPM and ordered ferrimagnetic particles, which is in good agreement with the results of static magnetic measurements. Mössbauer spectra of the samples recorded at room temperature (300 K) and at different temperatures down to 20 K confirmed the presence of the SPM relaxation of the nanoparticles of the samples.  相似文献   

16.
The effect of tetravalent Ti+4 substitution in Mg0.95Mn0.05Fe2O4 on its magnetic and electrical properties has been studied using X-ray diffraction, Mössbauer spectroscopy, isothermal dc magnetization and dielectric measurements. X-ray diffraction studies have shown the structural transformation from cubic to tetragonal with the Ti+4 substitution. The Mössbauer spectra of Mg0.95Mn0.05Fe1.0Ti1.0O4 recorded in the temperature range 20-300 K shows the presence of the magnetic as well as quadrupole interactions. The isothermal hysteresis loop infers that the system exhibits a ferrimagnetic ordering at room temperature. The Zero-field-cooled (ZFC) and field-cooled (FC) magnetization studies support ferrimagnetic ordering of Mg0.95Mn0.05Fe1.0Ti1.0O4 at room temperature. Signatures of ferroelectric transition have been observed in the temperature range 200-300 K from dielectric measurements. The observed magnetic and dielectric behaviour indicate that this material exhibits multiferroic behaviour.  相似文献   

17.
The spontaneous magnetization and principal magnetic susceptibilities of TbFeO3 were measured from 4.2 to 300 K. The weak ferromagnetic moment is along the c crystallographic axis in the entire temperature range. The field dependence of the magnetization at 4.2 K was also studied. The magnetic behavior is interpreted in terms of an interaction between the ordered Fe3+ spin system and the electrons occupying the lowest lying “accidental” doublet of the Tb3+ ions. The FeTb interaction and the Tb3+ Van Vl eck susceptibility along the c axis play significant roles in determining the magnetic configuration of the Fe3+ spin system. No indication was found that the TbTb interaction plays a significant role in the magnetic behavior of TbFeO3 at temperature above 4.2 K.  相似文献   

18.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

19.
M?ssbauer and magnetic measurements have been carried out both on single crystals and polycrystalline samples of BaZn2Fe16O27 (Zn2-W) hexagonal ferrite. The saturation magnetization at 0 K and at room temperature turns out to be very high, that is, 123 and 79 Gauss·cm3/g, respectively. The results have been interpreted by assuming a local reversal or a weakening of the Fe3+ magnetic moments due to the perturbing action of Zn2+ ions. The magnetic anisotropy is confirmed to be uniaxial with an anisotropy field at room temperature of 12.500 Oe.  相似文献   

20.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号