首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 593 毫秒
1.
SO_2在TiO_2颗粒物表面的非均相反应   总被引:1,自引:0,他引:1  
尚静  李佳  朱彤 《中国科学:化学》2010,(12):1749-1756
使用漫反射红外傅里叶变换光谱(DRIFTS)原位反应器研究了SO2在TiO2颗粒物表面的非均相反应.研究了氧气浓度、相对湿度(RH)及紫外光光照对反应的影响.结果表明,SO2在TiO2颗粒物上可转化为亚硫酸盐或被氧化为硫酸盐.水汽或者紫外光照可促进SO2在TiO2颗粒物表面的非均相氧化反应,在两者都存在的情况下,对促进硫酸盐的生成有协同效应.在干态无光照条件下和一定湿度(RH=40%)紫外光照条件下,以硫酸盐的生成来计算,SO2在TiO2颗粒物表面的反应级数分别为二级和一级;反应摄取系数γBET分别为1.94×10-6和1.35×10-5.TiO2颗粒物表面的羟基参与了反应,在紫外光照下表面生成的活性氧物种在反应中起重要作用.  相似文献   

2.
氧化镁(MgO)是大气中矿物气溶胶的重要组分之一,对二次污染物的形成有着重要影响.本研究采用原位漫反射红外傅里叶变换光谱(DRIFTS)与离子色谱(IC)技术,研究了二氧化氮(NO2)在MgO颗粒表面的非均相反应.探讨了无光照、紫外光照、臭氧(O3)、温度及相对湿度(RH)等对该反应的影响机制,建立了新的测定摄取系数的方法.结果表明,无光照时,NO2在MgO颗粒表面生成的主要产物为硝酸盐和亚硝酸盐;在NO2-MgO-O3和NO2-MgO-hv两种反应体系中主要产物均为硝酸盐,生成的硝酸根峰面积分别是无光照条件下的1.54倍和3.04倍,O3和紫外光照对硝酸盐的生成均具有促进作用;在紫外光照条件下,NO2在MgO颗粒物表面生成硝酸根的初始速率随温度的升高而呈单峰变化,40℃时初始速率最大;影响NO2与MgO颗粒物反应的敏感因素为紫外光照和臭氧,其次为相对湿度和温度.在25℃,RH为5%时,无光照条件和紫外光照条件下反应初始摄取系数分别为9.01×10-4和5.65×10-3.  相似文献   

3.
使用漫反射红外傅里叶变换光谱(DRIFTS)原位反应器研究了甲醛在TiO2颗粒物表面的非均相反应,结合离子色谱定量分析了反应的主要产物甲酸盐,甲酸盐是由中间产物二氧亚甲基进一步氧化生成.研究了温度和紫外光照对反应的影响,结果表明升高温度和紫外光照可提高反应速率,推测了暗反应和紫外光照下甲醛在TiO2表面的非均相反应机制.结果表明常温下甲醛在TiO2颗粒物表面的反应级数接近2级,初始反应摄取系数为(0.5~5)×10-8([HCHO]:1×1013~2×1014molecule·cm-3),是甲醛浓度的一次函数,同时测定了表观活化能.  相似文献   

4.
为了深入理解沿海城市大气环境中NO2和海盐颗粒物的非均相反应规律,本研究使用漫反射红外傅立叶变换光谱(DRIFTS)比较研究了0%和20%相对湿度(relative humidty,RH)下NO2在湿海盐颗粒物表面的非均相反应.动力学测量表明硝酸盐的生成对NO2是二级反应,并且0%和20%相对湿度条件下,NO2分子浓度为1.96×1015molcules·cm-3时,反应增长阶段反应摄取系数分别为(5.51±0.19)×10-7和1.26×10-6.结果还显示相对湿度在30%以下时,海盐表面MgCl2·6H2O、CaCl2·2H2O所在点位通过释放结合水和吸附水汽,在海盐表面形成液态水的斑点,增强了反应持续能力.因此氯化钠表面非均相反应的研究可能会低估海盐颗粒物的非均相反应活性.  相似文献   

5.
建立了反相离子对高效液相色谱法对H2O2-Na2S2O3反应体系的反应物和中间产物进行了分离检测方法,并对此反应体系在酸性条件下的氧化反应动力学做了研究.结果表明:在25℃,pH 4.76时硫代硫酸盐氧化过程中出现的产物有:亚硫酸盐、连三硫酸盐、连四硫酸盐、连五硫酸盐、连六硫酸盐、连七硫酸盐和硫酸根,pH越低越易生成更高的连多硫酸盐;在氧化H2O2过量的情况下反应对硫代硫酸盐来说为一级反应,并测得了准一级反应速率常数.  相似文献   

6.
使用DRIFTS, XPS, HPLC和IC考察了常温、常压和氧气存在下SO2与Fe2O3的复相反应, 结果表明, SO2在Fe2O3表面的反应活性与Fe2O3表面含水量密切相关, 表面含水量增加有助于Fe(Ⅱ)(aq)和硫酸盐的生成.室温下(T=291 K, 相对湿度68%), 每毫克Fe2O3在30 min内可消耗53.6 μg SO2, 生成12.6 ng Fe(Ⅱ)(aq)和56.2 μg SO2-4.反应产物 SO2-4的浓度比Fe(Ⅱ)(aq)的浓度高3个数量级, 表明在生成硫酸盐的复相反应中铁对SO2氧化具有非常高的催化活性.提出了Fe(Ⅱ)(aq) 和硫酸盐的生成机理.  相似文献   

7.
使用DR IFTS,XPS,HPLC和IC考察了常温、常压和氧气存在下SO2与Fe2O3的复相反应,结果表明,SO2在Fe2O3表面的反应活性与Fe2O3表面含水量密切相关,表面含水量增加有助于Fe(Ⅱ)(aq)和硫酸盐的生成.室温下(T=291 K,相对湿度68%),每毫克Fe2O3在30 m in内可消耗53.6μg SO2,生成12.6 ngFe(Ⅱ)(aq)和56.2μg SO42-.反应产物SO42-的浓度比Fe(Ⅱ)(aq)的浓度高3个数量级,表明在生成硫酸盐的复相反应中铁对SO2氧化具有非常高的催化活性.提出了Fe(Ⅱ)(aq)和硫酸盐的生成机理.  相似文献   

8.
基于亚硫酸盐在碱性条件下与碱性品红的褪色反应,建立了流动注射光度分析测定食品中亚硫酸盐的新方法.在38样/h采样频率下检出限为0.016μg/mL,SO32-质量浓度在0.04~1.5 μg/mL范围符合朗伯比耳定律,测定1.2μg/mL SO32- 11次,相对标准偏差为0.41%.该法可用于食品中亚硫酸盐的测定.  相似文献   

9.
大气复合污染及灰霾形成中非均相化学过程的作用   总被引:19,自引:0,他引:19  
城市和区域大气复合污染的特征为污染源排放的一次污染物通过大气中的化学反应生成高浓度的氧化剂(臭氧等)及细颗粒物等二次污染物,它们在静稳天气下积累,导致低能见度的灰霾现象并严重影响人体健康和气候.大气复合污染中同时存在高浓度的一次排放和二次转化的气态及颗粒污染物,这为细颗粒表面非均相反应提供了充足的反应物;而气态污染物在细颗粒表面的非均相反应可改变大气氧化性及颗粒物的化学组分、物化性质和光学性质,从而可能对大气复合污染和灰霾的形成起到促进的作用.利用漫反射红外傅里叶变换光谱和单颗粒显微拉曼原位在线技术,我们对大气气态污染物NO2、SO2、O3、甲醛在CaCO3、高岭石、蒙脱石、NaCl、海盐、Al2O3和TiO2等大气主要颗粒物表面的反应进行了系统的反应动力学和机制研究,我们发现反应主要产物为硫酸盐、硝酸盐或甲酸盐,它们可极大改变颗粒物吸湿性和消光性质.通过分析这些非均相反应的动力学过程,我们识别出NO2-颗粒物-H2O、SO2-颗粒物-O3、有机物/SO2-颗粒物-光照等三元反应体系的协同作用机制,这些协同机制对于阐明大气复合污染及灰霾形成的反馈机制和非线性过程提供了实验证据和理论依据.  相似文献   

10.
ZnO超微粒子光催化氧化SO2的研究   总被引:27,自引:0,他引:27  
 利用ZnO光催化技术对SO2氧化进行了研究.结果表明,在一定的\r\n反应条件下,ZnO超微粒子光催化SO2氧化的转化率较高,320℃下焙烧\r\n的ZnO超微粒子上SO2氧化的转化率高达99%.考察了氧和水蒸气分压等\r\n因素对SO2氧化反应的影响.用化学法对气态和凝聚态产物SO3进行了定\r\n性分析,并对SO2光催化氧化反应动力学行为及机理进行了探讨.  相似文献   

11.
The heterogeneous reaction of SO2 on TiO2 particles was studied using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The influences of the oxygen concentration, relative humidity (RH), and ultraviolet (UV) light illumination (λ ≈ 365 nm) intensity on the reaction were investigated. The main product of the heterogeneous reaction of SO2 on TiO2 particles was sulfate with UV illumination and sulfite without it. The production of sulfate was promoted significantly with UV illumination or water, and there was a synergistic effect when both were present. In the dry system without UV, the heterogeneous reaction of SO2 on TiO2 particles was found to be second-order for SO2 and the initial uptake coefficient, γBET, was determined to be 1.94 × 10?6. With UV and RH = 40%, the reaction order was first-order and the initial uptake coefficient was 1.35 × 10?5.  相似文献   

12.
Adsorption of sulfur dioxide on hematite and goethite particle surfaces   总被引:1,自引:0,他引:1  
The adsorption of sulfur dioxide (SO(2)) on iron oxide particle surfaces at 296 K has been investigated using X-ray photoelectron spectroscopy (XPS). A custom-designed XPS ultra-high vacuum chamber was coupled to an environmental reaction chamber so that the effects of adsorbed water and molecular oxygen on the reaction of SO(2) with iron oxide surfaces could be followed at atmospherically relevant pressures. In the absence of H(2)O and O(2), exposure of hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeOOH) to SO(2) resulted predominantly in the formation of adsorbed sulfite (SO(3)(2-)), although evidence for adsorbed sulfate (SO(4)(2-)) was also found. At saturation, the coverage of adsorbed sulfur species was the same on both alpha-Fe(2)O(3) and alpha-FeOOH as determined from the S2p : Fe2p ratio. Equivalent saturation coverages and product ratios of sulfite to sulfate were observed on these oxide surfaces in the presence of water vapor at pressures between 6 and 18 Torr, corresponding to 28 to 85% relative humidity (RH), suggesting that water had no effect on the adsorption of SO(2). In contrast, molecular oxygen substantially influenced the interactions of SO(2) with iron oxide surfaces, albeit to a much larger extent on alpha-Fe(2)O(3) relative to alpha-FeOOH. For alpha-Fe(2)O(3), adsorption of SO(2) in the presence of molecular oxygen resulted in the quantitative formation of SO(4)(2-) with no detectable SO(3)(2-). Furthermore, molecular oxygen significantly enhanced the extent of SO(2) uptake on alpha-Fe(2)O(3), as indicated by the greater than two-fold increase in the S2p : Fe2p ratio. Although SO(2) uptake is still enhanced on alpha-Fe(2)O(3) in the presence of molecular oxygen and water, the enhancement factor decreases with increasing RH. In the case of alpha-FeOOH, there is an increase in the amount of SO(4)(2-) in the presence of molecular oxygen, however, the predominant surface species remained SO(3)(2-) and there is no enhancement in SO(2) uptake as measured by the S2p : Fe2p ratio. A mechanism involving molecular oxygen activation on oxygen vacancy sites is proposed as a possible explanation for the non-photochemical oxidation of sulfur dioxide on iron oxide surfaces. The concentration of these sites depends on the exact environmental conditions of RH.  相似文献   

13.
In this laboratory study, model particles of ammonium sulfate (AS) and ammonium nitrate (AN) were exposed to chlorine atoms and uptake experiments were performed in a coated wall flow tube reactor coupled to a molecular beam mass spectrometer. The reactive surfaces were prepared by coating the inner surface of the reactor using two different methods: either by depositing size-selected particles on the halocarbon wax or by spray depositing thin films using a constant output atomizer. The observed uptake coefficients vary for (NH(4))(2)SO(4), ranging from γ(Cl)(AS)≈ 1 × 10(-3) for size-selected particles to γ(Cl)(AS)≈ 6 × 10(-2) for thin films prepared by spray. An uptake coefficient of γ(Cl)(AN)≈ 2.5 × 10(-3) of Cl˙ on size-selected NH(4)NO(3) particles was measured. A heterogeneous recombination of Cl atoms to from Cl(2) molecules was observed for the two surfaces. Furthermore, an ageing process was observed for AS particles, this phenomenon leading to the formation of new chlorine species on the solid substrate.  相似文献   

14.
Infrared aerosol flow tube experiments were performed for mixtures of ammonium, sulfate, and hydrogen ions at 293 K. The impact of the cycling of relative humidity (RH) on the crystals formed and on the hygroscopic growth was evaluated. Submicron particles having an extent of neutralization (X) between 0.60 and 0.75 were the focus, with special emphasis on the composition of aqueous letovicite (NH4)3H(SO4)2 (X = 0.75) because of its unique behavior. Aqueous letovicite particles crystallized initially as an external mixture of solid particles, forming pure particles of letovicite (NH4)3H(SO4)2(s) (LET) in some cases and internally mixed particles of ammonium sulfate ((NH4)2SO4(s);AS) and ammonium bisulfate (NH4HSO4(s); AHS) in other cases. Cycling between 3% and 48% RH increased the fraction of LET particles in the aerosol population, moving in the direction of the more thermodynamically favored species. However, some internally mixed particles remained even after multiple cycles, possibly indicative of a memory effect of AS as a heterogeneous nucleus for AHS. For all compositions studied, the RH of first water uptake and the magnitude of water uptake at higher RH were compared to model predictions. As expected, the more acidic particles (X = 0.60 and 0.65) took up water at the eutonic RH (37%) of mixed AHS/LET particles, but not as expected, both solids dissolved completely, arguing for an increased water solubility possibly attributable to nanocrystalline materials. Particles of X = 0.70 took up water above 41% RH, suggesting a particle morphology of an outer coating of AHS that prevents water uptake at the lower eutonic RH values of mixed AHS/LET and AHS/AS particles. Particles of X = 0.75 took up water as expected for an externally mixed particle population of LET and AS/AHS particles, although the fraction of each type in the population depended on the RH history. These results show that the hysteresis effect for some particles depends on a multi-node RH history. The implication for atmospheric particles is that the crystals present therein as well as particle morphology, water content, and extent of internal/external mixing might continue to evolve during multiple atmospheric cycles of RH.  相似文献   

15.
Using an electrodynamic balance, we determined the relative humidity (RH) at which aqueous inorganic-malonic acid particles crystallized, with ammonium sulfate ((NH(4))(2)SO(4)), letovicite ((NH(4))(3)H(SO(4))(2)), or ammonium bisulfate (NH(4)HSO(4)) as the inorganic component. The results for (NH(4))(2)SO(4)-malonic acid particles and (NH(4))(3)H(SO(4))(2)-malonic acid particles show that malonic acid decreases the crystallization RH of the inorganic particles by less than 7% RH when the dry malonic acid mole fraction is less than 0.25. At a dry malonic acid mole fraction of about 0.5, the presence of malonic acid can decrease the crystallization RH of the inorganic particles by up to 35% RH. For the NH(4)HSO(4)-malonic acid particles, the presence of malonic acid does not significantly modify the crystallization RH of the inorganic particles for the entire range of dry malonic acid mole fractions studied; in all cases, either the particles did not crystallize or the crystallization RH was close to 0% RH. Size dependent measurements show that the crystallization RH of aqueous (NH(4))(2)SO(4) particles is not a strong function of particle volume. However, for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry malonic acid mole fraction = 0.36), the crystallization RH is a stronger function of particle volume, with the crystallization RH decreasing by 6 +/- 3% RH when the particle volume decreases by an order of magnitude. To our knowledge, these are the first size dependent measurements of the crystallization RH of atmospherically relevant inorganic-organic particles. These results suggest that for certain organic mole fractions the particle size and observation time need to be considered when extrapolating laboratory crystallization results to atmospheric scenarios. For aqueous (NH(4))(2)SO(4) particles, the homogeneous nucleation rate data are a strong function of RH, but for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry organic mole fraction = 0.36), the rates are not as dependent on RH. The homogeneous nucleation rates for aqueous (NH(4))(2)SO(4) particles were parametrized using classical nucleation theory, and from this analysis we determined that the interfacial surface tension between the crystalline ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is between 0.053 and 0.070 J m(-2).  相似文献   

16.
采用DRIFTS和XPS等方法研究了SO2在NaCl和α-Fe2O3混合物表面的复相反应, 并计算了反应的吸附常数. 结果表明, 反应生成物主要为硫酸盐、硫酸氢盐以及少量的亚硫酸(氢)盐; SO2与NaCl和α-Fe2O3混合物的反应符合零级反应动力学规律; NaCl的含量对反应有影响, 随着混合物中NaCl含量的增加, BET吸附常数呈现先上升而后再下降的变化规律, 当NaCl的质量分数达到70%左右时, BET吸附常数达到最大(4.62×10-6), 是纯α-Fe2O3(5.72×10-7)的8.08倍; 反应生成的FeCl2-SO3-中间体作为SO2的储存库, 促进了更多的硫酸盐生成.  相似文献   

17.
Diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) is a powerful technique for analyzing solid powders and for following their reactions in real time. We demonstrate that it can also be applied to studying the uptake and reactions of gases in liquid films. Within the DRIFTS cell, a 10%(w/w) mixture of MgCl(2) x 6H(2)O in NaCl was equilibrated with air at 50% RH, which is above the deliquescence point of the magnesium salt but below that of NaCl. This mixture of NaCl coated with an aqueous magnesium chloride solution was then reacted with gas phase OH to generate hydroxide ions via a previously identified interface reaction. This treatment, hereafter referred to as OH-processing, was sufficient to convert some of the magnesium chloride to Mg(OH)(2) and Mg(2)(OH)(3)Cl x 4H(2)O, making the aqueous film basic and providing a reservoir of alkalinity. Subsequent addition of SO(2) to the basic processed mixture resulted in its uptake and conversion to sulfite which was measured by FTIR. The sulfite was simultaneously oxidized to sulfate by HOCl/OCl(-) that was formed in the initial OH-processing of the salt. Further uptake and oxidation of SO(2) in the aqueous film took place when the salt was subsequently exposed to O(3). These studies demonstrate that DRIFTS can be used to study the chemistry in liquid films in real time, and are consistent with the hypothesis that the reaction of gaseous OH with chloride ions generates alkalinity that enhances the uptake and oxidation of SO(2) under these laboratory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号