首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1At and 3At potential energy surfaces (PESs). Based on the polarization-dependent differential cross sections (PDDCSs) and the angular distributions of the product angular momentum with the reactant at different values of initial v or j, the results show that the product scattering and product polarization have strong links with initial vibrationalrotational numbers of v and j. The significant manifestation of the normal DCSs is that the forward scattering gradually becomes predominant with the initial vibrational excitation increasing, and the scattering angle of the HF product taking place on the 3At potential energy surface is found to be more sensitive to the initial value of v. The product orientation and alignment are strongly dependent on the initial rovibrational excitation effect. With enhancement in the initial rovibrational excitation effect, there is an overall decrease in the product orientation as well as in the product alignment either perpendicular to the reagent relative velocity vector k or along the direction of the y axis, for which the initial rotational excitation effect is much more noticeable than the vibrational excitation effect. Moreover, the initial rovibrational excitation effect on the product polarization is more pronounced for the 3At potential energy surface than for the 1At potential energy surface.  相似文献   

2.
A new London-Eyring-Polanyi-Sato potential energy surface is employed in this work to study the stereo properties of the O(3P)+CH4 →H+CH3O reaction in its rovibrationally ground state using the quasiclassical trajectory method(QCT).Our calculations are performed at a range of collision energies,Ec=1.5eV~3.5eV,and the excitation function obtained by the QCT method accords well with the experimental data.The product rotational polarization is calculated,and the product shows a strong rotational polarization in the centre-of-mass coordinate system.The orientation of the product rotational angular momenta is sensitive to the increase in collision energy,and the alignment of the product rotational angular momenta shows some of the properties of the heavy heavy-light mass combination reactions.In the isotopic substituted reaction study,when the H atoms in methane are replaced by D atoms,the rotational polarization is obviously reduced.The polarization-dependent differential cross section is also studied by this QCT calculation to provide detailed information about the rotational alignment and orientation of the product.  相似文献   

3.
The stereodynamics of the reaction of Ca + HCl are calculated at three different collision energies based on the potential energy surface [Verbockhaven G et al. 2005 J. Chem. Phys. 122 204307] using quasi-classical trajectory theory. The polarization-dependent differential cross sections (PDDCSs) (2π/σ )(dσ 00 /dω t ), (2π/σ )(dσ 20 /dωt ), (2π/σ )(dσ 22+ /dωt ), (2π/σ )(dσ 21 /dω t ) and the distributions of P(θ r ), P(φr ), and P(θr ,φr ) are calculated. The results indicate that the rotational polarization of the CaCl product presents different characteristics for the different collision energies, and the effects of the collision energy on the vector potential, including the alignment, orientation, and PDDCSs, are not obvious.  相似文献   

4.
The vector correlations in the reaction F+H2 (v =0-3, j =0-3)→ HF(v', j')+H are investigated using the quasi- classical trajectory method on the Stark-Werner potential energy surface at a collision energy of 1.0eV. The potential distribution P(θr) to angles between k and j', the distribution P(Фr) to dihedral angles, denoting k - k' - j' correlation and the polarization-dependent generalized differential cross sections, are calculated. The effect of reagent vibrational and rotational excitation on the F+H2 reaction is discussed in detail The results suggest that the different vibrational and rotational quantum states of H2 have different influences on the product polarization.  相似文献   

5.
The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A potential energy surface(PES) [Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory(QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail.  相似文献   

6.
Quasiclassical trajectory (QCT) calculations have been performed for the abstraction reaction, D'+ DS(v = 0, j = 0) → D'D + S on a new LZHH potential energy surface (PES) of the adiabatic 3 A electronic state [Lü et al. 2012 J. Chem. Phys. 136 094308]. The collision energy effect on the integral cross section and product polarization are studied over a wide collision energy range from 0.1 to 2.0 eV. The cross sections calculated by the QCT procedure are in good accordance with previous quantum wave packet results. The three angular distribution functions, P(θr), P(φr), and P(θr,φr), together with the four commonly used polarization-dependent differential cross sections ((2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt), (2π/σ)(dσ21/dωt)) are obtained to gain insight into the chemical stereodynamics of the title reaction. Influences of the collision energy on the product polarization are exhibited and discussed.  相似文献   

7.
王伟  于永江  赵刚  杨传路 《中国物理 B》2016,25(8):83402-083402
The stereodynamical properties of H(~2S) + NH(v = 0,j = 0,2,5,10)→N(~4S) + H_2 reactions are studied in this paper by using the quasi-classical trajectory(QCT) method with different collision energies on the double many-body expansion(DMBE) potential energy surface(PES)(Poveda L A and Varandas A J C 2005 Phys.Chem.Chem.Phys.7 2867).In a range of collision energy from 2 to 20 kcal/mol,the vibrational rotational quantum numbers of the NH molecules are specifically investigated on v = 0 and j = 0,2,5,10 respectively.The distributions of P(θ_r),P(φ_r),P(θ_r,φ_r),(2π/σ)(dσ_(00)/dω_t)differential cross-section(DCSs) and integral cross-sections(ICSs) are calculated.The ICSs,computed for collision energies from 2 kcal/mol to 20 kcal/mol,for the ground state are in good agreement with the cited data.The results show that the reagent rotational quantum number and initial collision energy both have a significant effect on the distributions of the k-j',the k-k'-j',and the k-k' correlations.In addition,the DCS is found to be susceptible to collision energy,but it is not significantly affected by the rotational excitation of reagent.  相似文献   

8.
Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012 J. Chem. Phys. 136 094308). The QCT-calculated reaction probabilities and cross sections for the S + H2 (v = 0, j = 0) reaction are in good agreement with the previous quantum mechanics (QM) results. The vector properties including the alignment, orientation, and polarization- dependent differential cross sections (PDDCSs) of the product SH are presented at a collision energy of 1.8 eV. The effects of the vibrational and rotational excitations of reagent on the stereodynamics are also investigated and discussed in the present work. The calculated QCT results indicate that the vibrational and rotational excitations of reagent play an important role in determining the stereodynamic properties of the title reaction.  相似文献   

9.
李永庆  杨云帆  于洋  张永嘉  马凤才 《中国物理 B》2016,25(2):23401-023401
Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a~1?) →H_2(X~1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energy surface reported by Li et al.[Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k–k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k–k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H_2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.  相似文献   

10.
Vector correlations of the reaction N(2D)+ H2(X1Σ+g) → NH(a1?)+ H(2S) are studied based on a recent DMBESEC PES for the first excited state of NH2[J. Phys. Chem. A 114 9644(2010)] by using a quasi-classical trajectory method.The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0–5 and j = 0 states in a wide collision energy range(10–50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly,the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H–H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(φr), and P(θr, φr).  相似文献   

11.
Quasi-classical trajectory (QCT) calculations have been performed to study the product polarization behaviours in the reaction O(3P) + D2 (v = 0, j = 0) → OD + D. By running trajectories on the 3A and 3A potential energy surfaces (PESs), vector correlations such as the distributions of the polarization-dependent differential cross sections (PDDCSs), the angular distributions of P (θr) and P (φr) are presented. Isotope effect is discussed in this work by a comprehensive comparison with the reaction O(3P) + H2 (v = 0, j = 0) → H + H. Common characteristics as well as differences are discussed in product alignment and orientation for the two reactions. The isotope mass effect differs on the two potential energy surfaces: the isotope mass effect has stronger influence on P (θr) and PDDCSs of the 3A PES while the opposite on P (φr) of the 3A potential energy surface.  相似文献   

12.
岳现房 《中国物理 B》2012,21(7):73401-073401
Stereodynamics for the reaction H+LiF(v=0, j=0) → HF+Li and its isotopic variants on the ground-state (1 2 A′) potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P (θr), P (φr), and P (θr ,φr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j′ is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS 00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.  相似文献   

13.
Quasi-classical trajectory(QCT) calculations are reported for the H+LiH(v = 0–2, j = 0)→Li+H_2 reaction on a new ground electronic state global potential energy surface(PES) of the LiH_2 system. Reaction probability and integral cross sections(ICSs) are calculated for collision energies in the range of 0 eV–0.5 eV. Reasonable agreement is found in the comparison between present results and previous available theoretical results. We carried out statistical analyses with all the trajectories and found two main distinct reaction mechanisms in the collision process, in which the stripping mechanism(i.e., without roaming process) is dominated over the collision energy range. The polarization dependent differential cross sections(PDDCSs) indicate that forward scattering dominates the reaction due to the dominated mechanism. Furthermore,the reactant vibration leads to a reduction of the reactivity because of the barrierless and attractive features of PES and mass combination of the system.  相似文献   

14.
The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A’ potential energy surface (PES)[Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory (QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j’ of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail.  相似文献   

15.
State-to-state time-dependent quantum dynamics calculations are carried out to study F(~2P) + HO(~2Π) → O(~3P) +HF(~1Σ~+) reaction on 1~3A〞 ground potential energy surface(PES). The vibrationally resolved reaction probabilities and the total integral cross section agree well with the previous results. Due to the heavy–light–heavy(HLH) system and the large exoergicity, the obvious vibrational inversion is found in a state-resolved integral cross section. The total differential cross section is found to be forward–backward scattering biased with strong oscillations at energy lower than a threshold of 0.10 eV, which is the indication of the indirect complex-forming mechanism. When the collision energy increases to greater than 0.10 eV, the angular distribution of the product becomes a strong forward scattering, and almost all the products are distributed at θ_t = 0°. This forward-peaked distribution can be attributed to the larger J partial waves and the property of the F atom itself, which make this reaction a direct abstraction process. The state-resolved differential cross sections are basically forward-backward symmetric for v' = 0, 1, and 2 at a collision energy of 0.07 eV; for a collision energy of 0.30 eV,it changes from backward/sideward scattering to forward peaked as v increasing from 0 to 3. These results indicate that the contribution of differential cross sections with more highly vibrational excited states to the total differential cross sections is principal, which further verifies the vibrational inversion in the products.  相似文献   

16.
The quantum state-to-state calculations of the D + ND→N + D_2 reaction are performed on a potential energy surface of 4 A' state. The state-resolved integral and differential cross sections and product state distributions are calculated and discussed. It is found that the rotational distribution, rather than the vibrational distribution, of the product has an obvious inversion. Due to the fact that it is a small-impact-parameter collision, its product D_2 is mainly dominated by rebound mechanism, which can lead to backward scattering at low collision energy. As the collision energy increases, the forward scattering and sideward scattering begin to appear. In addition, the backward collision is also found to happen at high collision energy, through which we can know that both the rebound mechanism and stripping mechanism exist at high collision energy.  相似文献   

17.
Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J.Chem.Phys.121 9343],the effect of the reagent vibration on vector correlation of the ion-molecule reactions D~-+H2 and H~-+D2 is studied at a collision energy of 35.7 kcal/mol.Four generalized polarization-dependent differential cross sections (2π/σ)(dσ 00 /dωt),(2π/σ)(dσ 20 /dωt),(2π/σ)(dσ 22+ /dωt),and (2π/σ)(dσ 21 /dωt) are presented in the centre-of-mass reference frame,separately.At the same time,the effects on the product angular distributions P (θr),P (φr) and P (θr,φr) of the title reactions are also analysed.The calculated results show that the scattering tendencies of the product HD,the alignment and the orientation of j sensitively depend on reagent molecule vibration.  相似文献   

18.
We carry out quantum scattering dynamics and quasi-classical trajectory(QCT) calculations for the O+H_2~+ reactive collision in the ground(1~2 A").nd first excited(1~2 A') potential energy surface.We calculate the reaction probabilities of O+H_2~+(v=0,j=0)→OH~++H and O+H_2~+(v=0,j=0)→OH+H~+reaction for total angular momentum J=0.The results calculated by QCT are consistent with those from quantum mechanical wave packet.Using the QCT method,we generate in the center-of-mass frame the product state-resolved integral cross-sections(ICSs);two commonly used generalized polarization-dependent differential cross-sections(PDDCS s),(2π/σ)(dσ_(00)/dω_t),(2π/σ)(dσ_(20)/dω_t));and three angular distributions of the product rotational vectors,p(θ_r),P(φ_r),and p(θ_r,φ_r).We discuss the influence on the scalar and vector properties of the potential energy surface,the collision energy,and the isotope mass.Since there are deep potential wells in these two potential energy surfaces,their kinetic characteristics are similar to each other and the isotopic effect is not obvious.However,the well depths and configurations of the two potential energy surfaces are different,so the effects of isotopic substitution on the integral cross-section and the rotational polarization of product are different.  相似文献   

19.
Non-adiabatic dynamical calculations are carried out for the Na(3 p)+HD(ν = 1, j = 0)→NaH/NaD+D/H reaction on the diabatic potential energy surfaces of Wang et al.(Sci. Rep. 2018, 8, 17960) by using the time-dependent wave packet method. The state-to-state integral cross sections and differential cross sections of two reaction channels(NaH/NaD+D/H)are calculated for collision energy up to 0.4 eV. The cross section branching ratio indicates that the dominant reaction channel changes from NaD+H to NaH+D when the collision energy is larger than 0.227 eV. The products from two reaction channels both prefer to form in vibrationally cold but rotationally hot states, and they both tend to forward scattering.  相似文献   

20.
The quasi-classical trajectory(QCT) is calculated to study the stereodynamics properties of the title reaction H(2S)+NH(X3∑-) →N(4S)+H2 on the ground state 4A' potential energy surface(PES) constructed by Zhai and Han [2011 J.Chem.Phys.135 104314].The calculated QCT reaction probabilities and cross sections are in good agreement with the previous theoretical results.The effects of the collision energy on the k-k' distribution and the product polarization of H2 are studied in detail.It is found that the scattering direction of the product is strongly dependent on the collision energy.With the increase in the collision energy,the scattering directions of the products change from backward scattering to forward scattering.The distribution of P(θr) is strongly dependent on the collision energy below the lower collision energy(about 11.53 kcal/mol).In addition,the P(φr) distribution dramatically changes as the collision energy increases.The calculated QCT results indicate that the collision energy plays an important role in determining the stereodynamics of the title reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号