首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vector correlations in the reaction F+H2 (v =0-3, j =0-3)→ HF(v', j')+H are investigated using the quasi- classical trajectory method on the Stark-Werner potential energy surface at a collision energy of 1.0eV. The potential distribution P(θr) to angles between k and j', the distribution P(Фr) to dihedral angles, denoting k - k' - j' correlation and the polarization-dependent generalized differential cross sections, are calculated. The effect of reagent vibrational and rotational excitation on the F+H2 reaction is discussed in detail The results suggest that the different vibrational and rotational quantum states of H2 have different influences on the product polarization.  相似文献   

2.
尹淑慧  邹静涵  郭明星  李磊  许雪松  高宏  车丽 《中国物理 B》2013,22(2):28201-028201
The stereodynamics of the abstraction reaction H + NeH+(v = 1-3,j = 1,3,5) → H2+ + Ne is studied theoretically with a quasi-classical trajectory method on a new ab initio potential energy surface [ S J,Zhang P Y,Han K L and He G Z 2012 J.Chem.Phys.132 014303].The effects of vibrational and rotational excitation of reagent molecules on the polarization of the product are investigated.The reaction cross sections,the distributions of P(θr),P(φr),and polarizationdependent differential cross sections(PDDCSs) are calculated.The obtained cross sections indicate that the title reaction is a typical barrierless atom(ion)-ion(molecule) reaction.The initial vibrational excitation and rotational excitation of reagent molecules have distinctly different influences on stereodynamics of the title reaction,and the possible reasons for the differences are presented.  相似文献   

3.
赵娟  罗一 《中国物理 B》2011,20(4):43402-043402
Based on an extended London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES), the Ba + HF reaction has been studied by the quasi-classical trajectory (QCT) method. The reaction integral cross section as a function of collision energy for the Ba + HF → BaF + H reaction is presented and the influence of isotope substitution on the differential cross sections (DCSs) and alignments of the product's rotational angular momentum have also been studied. The results suggest that the integral cross sections increase with increasing collision energy, and the vibrational excitation of the reagent has great influence on the DCS. In addition, the product's rotational polarization is very strong as a result of heavy-heavy-light (HHL) mass combination, and the distinct effect of isotope substitution on the stereodynamics is also revealed.  相似文献   

4.
The quasi-classical trajectory(QCT) method is employed to calculate the stereodynamics of the abstraction reactions H/D+HS/DS based on an accurate potential energy surface [L S J,Zhang P Y,Han K L and He G Z 2012 J.Chem.Phys.136 094308].The reaction cross sections of the title reaction are computed,and the vector correlations for different collision energies and different initial vibrational states are presented.The influences of the collision energy and reagent vibration on the product polarization are studied,and the product polarizations of the title reactions are found to be distinctly different,which arises from the different mass factors,collision energies,and reagent vibrational states.  相似文献   

5.
魏强 《中国物理 B》2014,23(2):23401-023401
The stereodynamics and reaction mechanism of the H′(^2S) + NH (X^3∑^-) → N(^4S) + H2 reaction are thoroughly studied at collision energies in the 0.1 eV-1.0 eV range using the quasiclassical trajectory (QCT) on the ground 4A″ potential energy surface (PES). The distributions of vector correlations between products and reagents P(φr), P(φr) and P(φr,φr) are presented and discussed. The results indicate that product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane; further, the product H2 presents different rotational polarization behaviors for different collision energies. Furthermore, four polarization-dependent differential cross sections (PDDCSs) of the product He are also calculated at different collision energies. The reaction mechanism is analyzed based on the stereodynamics properties. It is found that the abstraction mechanism is appropriate for the title reaction.  相似文献   

6.
To investigate the effect of a reagent’s rotational and vibrational excitations on the stereo-dynamics of the reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT) method on the 3 A and 3 A potential energy surfaces (PESs). The reaction cross section is considered as the only scalar property in this work at four different collision energies. Furthermore the vector properties including two polarization-dependent differential cross sections (PDDCSs), the angular distributions of product’ rotational momentum are discussed at one fixed collision energy. Effects of reagents’ rotational excitation on the reaction do exist regularly.  相似文献   

7.
In this paper, the stereodynamics of Li + DF → Li F + D reaction is investigated by the quasi-classical trajectory(QCT)method on the ^2A' potential energy surface(PES) at a relatively low collision energy of 8.76 kcal/mol. The scalar properties of the title reaction such as reaction probability and cross section are studied with vibrational quantum number of v = 1–6. The product angular distributions P(θr) and P(φr) are presented in the same vibrational level range. Moreover, two polarization-dependent generalized differential cross sections(PDDCSs), i.e., the PDDCS00 and PDDCS22+are calculated as well. These stereodynamical results demonstrate sensitive behaviors to the vibrational quantum numbers.  相似文献   

8.
We investigate the influence of reagent vibration on the stereodynamics of the title reaction by the quasi-classical trajectory on the Aguado-Paniagua2-potential energy surface developed by Aguado et al.(J.Chem.Phys.1997 106 1013).The cross sections and reaction probability as functions of the reagent vibration are calculated in the centre-ofmass frame.The product angular distributions of p(θr),p(φr),and p(θr,φr),which reflect the vector correlation,are also presented and discussed.The results indicate that the vector properties are sensitively affected by the vibrational excitation.  相似文献   

9.
The quasi-classical trajectory(QCT) is calculated to study the stereodynamics properties of the title reaction H(2S)+NH(X3∑-) →N(4S)+H2 on the ground state 4A' potential energy surface(PES) constructed by Zhai and Han [2011 J.Chem.Phys.135 104314].The calculated QCT reaction probabilities and cross sections are in good agreement with the previous theoretical results.The effects of the collision energy on the k-k' distribution and the product polarization of H2 are studied in detail.It is found that the scattering direction of the product is strongly dependent on the collision energy.With the increase in the collision energy,the scattering directions of the products change from backward scattering to forward scattering.The distribution of P(θr) is strongly dependent on the collision energy below the lower collision energy(about 11.53 kcal/mol).In addition,the P(φr) distribution dramatically changes as the collision energy increases.The calculated QCT results indicate that the collision energy plays an important role in determining the stereodynamics of the title reaction.  相似文献   

10.
李淑娟  石英  解廷献  金明星 《中国物理 B》2012,21(1):13401-013401
We investigate the influence of reagent vibration on the stereodynamics of the title reaction by the quasi-classical trajectory on the Aguado-Paniagua2-potential energy surface developed by Aguado et al. (J. Chem. Phys. 1997 106 1013). The cross sections and reaction probability as functions of the reagent vibration are calculated in the centre-of-mass frame. The product angular distributions of p(θr), p(φr), and p(θr, φr), which reflect the vector correlation, are also presented and discussed. The results indicate that the vector properties are sensitively affected by the vibrational excitation.  相似文献   

11.
Calculations on the dynamics of the reaction O( 1 D) + HBr → OH + Br are performed on the ab initio potential energy surfaces (PESs) of the ground state given by Peterson Peterson K A J. Chem. Phys. 113 4598 (2000)using the quasiclassical trajectory (QCT) method. The product distribution of the dihedral angle, P (φ r ), and that of the angle between and , P (θ r ), are presented in three dimensions. Moreover, we also investigate the reagent vibrational excitation effects on the two polarization-dependent generalized differential cross sections (PDDCS), PDDCS 00 and PDDCS 20 , in the center-of-mass frame. The results indicate that the vector properties are sensitive to the reagent vibrational quantum number.  相似文献   

12.
The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory(QCT) method on the 11A potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(θr),P(φr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.  相似文献   

13.
李永庆  杨云帆  于洋  张永嘉  马凤才 《中国物理 B》2016,25(2):23401-023401
Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a~1?) →H_2(X~1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energy surface reported by Li et al.[Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k–k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k–k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H_2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.  相似文献   

14.
The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1At and 3At potential energy surfaces (PESs). Based on the polarization-dependent differential cross sections (PDDCSs) and the angular distributions of the product angular momentum with the reactant at different values of initial v or j, the results show that the product scattering and product polarization have strong links with initial vibrationalrotational numbers of v and j. The significant manifestation of the normal DCSs is that the forward scattering gradually becomes predominant with the initial vibrational excitation increasing, and the scattering angle of the HF product taking place on the 3At potential energy surface is found to be more sensitive to the initial value of v. The product orientation and alignment are strongly dependent on the initial rovibrational excitation effect. With enhancement in the initial rovibrational excitation effect, there is an overall decrease in the product orientation as well as in the product alignment either perpendicular to the reagent relative velocity vector k or along the direction of the y axis, for which the initial rotational excitation effect is much more noticeable than the vibrational excitation effect. Moreover, the initial rovibrational excitation effect on the product polarization is more pronounced for the 3At potential energy surface than for the 1At potential energy surface.  相似文献   

15.
The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(φr ), P(θr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.  相似文献   

16.
The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A’ potential energy surface (PES)[Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory (QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j’ of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail.  相似文献   

17.
<正>The quasi-classical trajectory(QCT) method is used to study the H+HS reaction on a newly built potential energy surface(PES) of the triplet state of H2S(3A″) in a collision energy range of 0-60 kcal/mol.Both scalar properties, such as the reaction probability and the integral cross section(ICS),and the vector properties,such as the angular distribution between the relative velocity vector of the reactant and that of the product,etc.,are investigated using the QCT method.It is found that the ICSs obtained by the QCT method and the quantum mechanical(QM) method accord well with each other.In addition,the distribution for the product vibrational states is cold,while that for the product rotational states is hot for both reaction channels in the whole energy range studied here.  相似文献   

18.
Quasi-classical trajectory(QCT) studies on the stereodynamics of H + Br O → O + HBr reaction have been performed on the X1A′state of ab initio potential energy surface by Peterson [Peterson K A 2000 J. Chem. Phys. 113 4598] in a collision energy range from 0 kcal/mol to 6 kcal/mol. Two of the polarization-dependent generalized differential cross sections(PDDCSs),(2π /σ)( dσ00/ dωt)(PDDCS00) and(2π /σ)( dσ20/ dωt)(PDDCS20) are considered. The rotational polarizations of these products show sensitive behaviors to the calculated collision energy range. Furthermore, in order to gain more knowledge about vector correlations, the product angular distribution, P(θr), and the dihedral angle, P(φr),are calculated, and the results indicate that both the rotational alignment and orientation of the product are enhanced as collision energy increases.  相似文献   

19.
Vector correlations of the reaction N(2D)+ H2(X1Σ+g) → NH(a1?)+ H(2S) are studied based on a recent DMBESEC PES for the first excited state of NH2[J. Phys. Chem. A 114 9644(2010)] by using a quasi-classical trajectory method.The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0–5 and j = 0 states in a wide collision energy range(10–50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly,the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H–H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(φr), and P(θr, φr).  相似文献   

20.
The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A potential energy surface(PES) [Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory(QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号