首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is focused on dynamic modeling of planar multibody systems with multiple deep groove ball bearing joints, in which the radial clearance, contact deformation, and bearing kinematics are included. By using the approach presented, the variation of the joint reaction force and the dynamic load on each ball element in bearings can be simulated. The deep groove ball bearing joints are modeled by introducing a nonlinear force system, which takes into account the contact elastic deformations between the ball elements and the raceways. The contact force is calculated by the Hertzian contact deformation theory that accounts for the geometrical and material properties of the contacting bodies. A planar slider-crank mechanism with two deep groove ball bearing joints is chosen as an example to demonstrate the application of the methodologies presented in this paper. In this model, one bearing locates at the joint between the ground and crank, while the other one locates at the joint between the crank and connecting rod. By numerical calculation, the dynamic load distribution characteristics of bearings under real mechanism movement conditions are simulated. From the results, it can be concluded that the dynamic load on each rolling element varies differently and belongs to a variable load with the change of mechanism configuration. Load characteristic analysis is the foundation of developing research on the fatigue life and reliability of bearings. This study will provide a key mechanical support for the performance evaluation, dynamic design, and geometrical parameter optimization of the joint rolling element bearings.  相似文献   

2.
应用有限元法建立偏置转子的计算模型,采用考虑轴承Hertzian接触力和内间隙等非线性因素的二自由度滚动轴承模型,建立了滚动轴承-偏置转子系统的非线性动力学模型.通过数值仿真和实验研究分析了转子系统的非线性动力特性.实验数据和有限元模型计算结果是一致的,证实了所建立滚动轴承-转子系统非线性模型的合理性.发现由于滚动轴承非线性因素的影响,当转速达到系统共振转速的两倍附近时,激起了系统亚谐共振.  相似文献   

3.
针对RV减速器角接触球轴承承受预紧力、轴向力和径向力等联合外载荷作用的工况,分析得出了内、外圈滚道接触界面的接触区几何参数和接触载荷.在此基础上,综合考虑了角接触球轴承的接触区宏观几何、接触载荷、真实表面粗糙度、瞬态效应等因素,建立了角接触球轴承混合润滑数学模型,分析了在不同工况下角接触轴承的润滑状况及表面以下应力分布.结果表明:随着载荷的不断增加,钢球与内圈沟道之间的油膜厚度会不断减少,导致干接触面积迅速扩大,接触点表面以下最大应力增大;转速的增加会使油膜变厚,干接触面积缩小.该结果对角接触球轴承的实际工程应用具有重要借鉴意义.  相似文献   

4.
A cohesive zone model for two-dimensional adhesive contact between elastic cylinders is developed by extending the double-Hertz model of Greenwood and Johnson (1998). In this model, the adhesive force within the cohesive zone is described by the difference between two Hertzian pressure distributions of different contact widths. Closed-form analytical solutions are obtained for the interfacial traction, deformation field and the equilibrium relation among applied load, contact half-width and the size of cohesive zone. Based on these results, a complete transition between the JKR and the Hertz type contact models is captured by defining a dimensionless transition parameter μ, which governs the range of applicability of different models. The proposed model and the corresponding analytical results can serve as an alternative cohesive zone solution to the two-dimensional adhesive cylindrical contact.  相似文献   

5.
Harsha  S. P.  Sandeep  K.  Prakash  R. 《Nonlinear dynamics》2004,37(2):91-114
In this paper, the radial vibrations of a rigid rotor supported by ball bearings are studied. In the analytical formulation, contacts between the balls and races are considered as nonlinear springs whose stiffnesses are obtained by using Hertzian elastic contact deformation theory. The implicit type numerical integration technique Newmark- with the Newton-Raphson method is used to solve the nonlinear differential equations iteratively. The effect of bearing running surface waviness on the vibrations of rotor is investigated. The formulation predicts discrete spectrum with specific frequency components for each order of waviness. Numerical results obtained from the simulation are validated with respect to those of prior researchers.  相似文献   

6.
航空发动机整机耦合动力学模型及振动分析   总被引:3,自引:0,他引:3  
陈果 《力学学报》2010,42(3):548-559
面向航空发动机整机振动, 建立了航空发动机转子-滚动轴承-机匣耦合动力学模型. 该模型具有如下特点: (1)考虑转子、滚动轴承及机匣之间的耦合作用; (2)考虑了实际航空发动机的弹性支承及挤压油膜阻尼效应; (3)将转子考虑为等截面自由欧拉梁模型, 运用模态截断法进行分析; (4)考虑了滚动轴承间隙、非线性赫兹接触力以及变柔性VC(Varyingcompliance)振动; (5)考虑了转子与机匣之间的碰摩故障. 运用数值积分方法研究了航空发动机的整机振动规律, 包括: 滚动轴承VC振动分析、弹性支承刚度对耦合系统临界转速的影响、转轴模态截断阶数NM对系统响应的影响分析、挤压油膜阻尼器参数对系统响应的影响分析、突加不平衡的瞬态响应分析以及转静碰摩故障特性分析等.   相似文献   

7.
Dynamic analysis of a high-speed rotor bearing systems is challenged by their highly nonlinear and complex properties. Hence, an approximate response surface method (RSM) is utilized to analyze the effects of design and operating parameters on the vibration signature of a rotor-bearing system. This paper focuses on accurate performance prediction, which is essential to the design of high performance rotor bearing system. It considers distributed defects such as internal radial clearance and surface waviness of the bearing components. In the mathematical formulation the contacts between the rolling elements and the races are considered as nonlinear springs, whose stiffnesses are obtained by using Hertzian elastic contact deformation theory. The governing differential equations of motion are obtained by using Lagrange's equations. In terms of the feature that the nonlinear bearing forces act on the system, a reduction method and corresponding integration technique is used to increase the numerical stability and decrease computer time for system analysis. Parameters effects are analyzed together and its influence considered with DOE and Surface Response Methodology are used to predict dynamic response of a rotor-bearing system.  相似文献   

8.
Impact affects the dynamic characteristics of mechanical multi-body systems and damages those rotating parts, such as the joint rolling element bearings, which are high-precision, defect intolerant components. Based on multi-body dynamic theory, Hertzian contact theory, and a continuous contact model, this study proposed a modelling method that can describe the dynamic behaviour of planar mechanical multi-body systems containing a rolling ball bearing joint under impact. In this method, the rigid bodies and bearing joint were connected according to their joint force constraints; the impact constraint between the multi-body system and the target rigid body was constructed using a continuous contact force model. Based on this method, the reflection relationship between the external impacts of the mechanical multi-body system and the variation law governing the dynamic load on the rolling bearing joint were revealed. Subsequently, an impact multi-body system, which was composed of a sliding–crank mechanism containing a rolling ball bearing joint and the target rigid body with an elastic support, was analysed to explore the dynamic response of such a complex discontinuous dynamic system andthe relevant relationship governing the dynamic load on the rolling bearing joint. In addition, a multi-body dynamic simulation software was used to build a virtual prototype of the impact slider–crank system. Compared with the theoretical model, the prototype had an additional deep groove ball bearing. That is to say, the prototype model took account of the specific geometric structural characteristics and the complex contact relationship of the inner and outer races, rolling balls, and bearing cage. Finally, the effectiveness of the theoretical method proposed in this study was verified by comparative analysis of the results. The results suggested that the external impact of a mechanical multi-body system was prone to induce sudden changes in the equivalent reaction force on its bearing joint and the dynamic load carried on its rolling balls. This study provided an effective method for exploring the distribution characteristics of dynamic loads on rolling ball bearing joints under working impact load conditions. Moreover, it offered support for the parameter optimisation of geometric structure, performance evaluation, and dynamic design of the rolling ball bearings.  相似文献   

9.
The performance of a ball bearing–rotor system is often limited by the occurrence of subharmonic resonance with considerable vibration and noise. In order to comprehend the inherent mechanism and the feature of the subharmonic resonance, a symmetrical rotor system supported by ball bearings is studied with numerical analysis and experiment in this paper. A 6DOF rotordynamic model which includes the non-linearity of ball bearings, Hertzian contact forces and bearing internal clearance, and the bending vibration of rotor is presented and an experimental rig is offered for the research of the subharmonic resonance of the ball bearing–rotor system. The dynamic response is investigated with the aid of orbit and amplitude spectrum, and the non-linear system stability is analyzed using the Floquet theory. All of the predicted results coincide well with the experimental data to validate the proposed model. Numerical and experimental results show that the resonance frequency is provoked when the speed is in the vicinity of twice synchroresonance frequency, while the rotor system loses stability through a period-doubling bifurcation and a period-2 motion i.e. subharmonic resonance occurs. It is found that the occurrence of subharmonic resonance is due to the together influence of the non-linear factors, Hertzian contact forces and internal clearance of ball bearings. The effect of unbalance load on subharmonic resonance of the rotor system is minor, which is different from that of the sliding bearing–rotor system. However, the moment of couple has an impact influence on the subharmonic resonances of the ball bearing–rotor system. The numerical and experimental results indicate that the subharmonic resonance caused by ball bearings is a noticeable issue in the optimum design and failure diagnosis of a high-speed rotary machinery.  相似文献   

10.
This research studies the effects of axial preload on nonlinear dynamic characteristics of a flexible rotor supported by angular contact ball bearings. A dynamic model of ball bearings is improved for modeling a five-degree-of-freedom rotor bearing system. The predicted results are in good agreement with prior experimental data, thus validating the proposed model. With or without considering unbalanced forces, the Floquet theory is employed to investigate the bifurcation and stability of system periodic solution. With the aid of Poincarè maps and frequency response, the unstable motion of system is analyzed in detail. Results show that the effects of axial preload applied to ball bearings on system dynamic characteristics are significant. The unstable periodic solution of a balanced rotor bearing system can be avoided when the applied axial preload is sufficient. The bifurcation margins of an unbalanced rotor bearing system enhance markedly as the axial preload increases and relates to system resonance speed.  相似文献   

11.
Continuous contact force models for impact analysis in multibody systems   总被引:14,自引:0,他引:14  
One method for predicting the impact response of a multibody system is based on the assumption that the impacting bodies undergo local deformations and the contact forces are continuous. In a continuous analysis, the integration of the system equations of motion is carried out during the period of contact; therefore, a model for evaluating the contact forces is required. In this paper, two such contact force models are presented, both Hertzian in nature and based upon the direct-central impact of two solid particles.At low impact velocities, the energy dissipation during impact can be represented by material damping. A model is constructed based on the general trend of the Hertz contact law in conjuction with a hysteresis damping function. The unknown parameters are determined in terms of a given coefficient of restitution and the impact velocity. When local plasticity effects are the dominant factor accounting for the dissipation of energy at high impact velocities, a Hertzian contact force model with permanent indentation is constructed. Utilizing energy and momentum considerations, the unknown parameters in the model are again evaluated. The two particle models are generalized to an impact analysis between two bodies of a multibody system.  相似文献   

12.
Considering the axial and radial loads, a math- ematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of dif- ferent parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dis- sipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.  相似文献   

13.
利用有限元法计算径向磁轴承性能   总被引:3,自引:2,他引:3  
利用非线性有限元方法(FEM)计算了一种径向磁轴承(定子具有8磁极常规结构)的转子在无偏心以及偏置电流分别为0.5 A、1.0 A和1.5 A下的电磁力及其电流刚度与位置刚度,预测了径向磁轴承的承载力,给出了其磁场分布图,并与磁轴承的线性化模型参数进行了比较.结果表明,基于有限元方法得到的计算值同试验结果一致,可以为径向磁轴承的设计和分析提供依据.  相似文献   

14.
研究外弹性支承滑动轴承-刚性转子系统的动力稳定性问题。建立了弹性支承圆瓦轴承-Jeffcot转子系统的力学模型,针对滑动轴承水平转子,在油膜力非线性的情况下,采用Newmark方法计算其响应。对于一个具体的算例,通过改变其参数,确定其稳定区,并与滑膜力线性化时理论分析的结果进行了比较。  相似文献   

15.
This paper is focused on accurate performance prediction due to localized defects (like spalls) of microns level on the bearing components, which is essential to the design for high performance. In the mathematical formulation, the contacts between the rolling elements and the races are considered as nonlinear springs, whose stiffnesses are obtained by using Hertzian contact deformation theory. The formulation predicts the discrete spectra with the characteristic defect frequencies and their harmonics, which is helpful in prediction of system stability and to avoid severe (chaotic) vibrations in a rotor bearing system. The results are presented in the form of bifurcation diagrams, Fast Fourier Transformation (FFT) and Poincaré maps for individual defects of bearing components. The system also shows the three different categories of system behavior under nonlinear dynamic conditions.  相似文献   

16.
中介轴承作为双转子系统高低压转子重要的支承部件,其内圈和外圈均随着低压转子和高压转子高速旋转, 其传热问题更加突出.本文研究中介轴承在非线性动载荷作用下的非线性热行为.基于双转子系统动力学响应定义中介轴承动载荷,考虑中介轴承的径向游隙、分数指数非线性和参数激励等非线性因素,中介轴承动载荷会出现跳跃和双稳态等非线性行为. 考虑润滑剂的黏温关系,根据Palmgren经验公式建立动载荷作用下中介轴承的热传递模型,通过数值求解得到中介轴承稳态温度,发现动载荷的非线性行为导致中介轴承温度出现跳跃和双稳态等非线性热行为.分析转速比、偏心距、中介轴承径向游隙、Hertz接触刚度和滚子数目对中介轴承温度及非线性热行为的影响,表明偏心距、径向游隙和刚度只影响非线性热行为,而转速比和滚子数目对两者都有重要影响. 本文研究表明,动载荷相较于静载荷更适合描述中介轴承的实际载荷,由于双转子系统具有非线性振动特性, 中介轴承的热行为也表现出复杂的非线性行为.  相似文献   

17.
高朋  侯磊  陈予恕 《力学学报》2021,53(1):248-259
中介轴承作为双转子系统高低压转子重要的支承部件,其内圈和外圈均随着低压转子和高压转子高速旋转, 其传热问题更加突出.本文研究中介轴承在非线性动载荷作用下的非线性热行为.基于双转子系统动力学响应定义中介轴承动载荷,考虑中介轴承的径向游隙、分数指数非线性和参数激励等非线性因素,中介轴承动载荷会出现跳跃和双稳态等非线性行为. 考虑润滑剂的黏温关系,根据Palmgren经验公式建立动载荷作用下中介轴承的热传递模型,通过数值求解得到中介轴承稳态温度,发现动载荷的非线性行为导致中介轴承温度出现跳跃和双稳态等非线性热行为.分析转速比、偏心距、中介轴承径向游隙、Hertz接触刚度和滚子数目对中介轴承温度及非线性热行为的影响,表明偏心距、径向游隙和刚度只影响非线性热行为,而转速比和滚子数目对两者都有重要影响. 本文研究表明,动载荷相较于静载荷更适合描述中介轴承的实际载荷,由于双转子系统具有非线性振动特性, 中介轴承的热行为也表现出复杂的非线性行为.   相似文献   

18.
Study of milling stability with Hertz contact stiffness of ball bearings   总被引:2,自引:0,他引:2  
This present work examines the stability and nonlinear responses of a spindle milling system supported by ball bearings. A shaft finite element based on Timoshenko beam theory is employed to model the spindle, and modal reduction method is therefore adopted for saving the numerical calculating time. The issues of evaluating the effects of the ball bearing Hertz contact stiffness are consequently addressed. It is found that suitable constant bearing stiffness can be adopted to replace the nonlinear nonsmooth Hertz stiffness in prediction of the critical cutting depth of the milling system in certain bearing configuration conditions. For the constant bearing stiffness can be obtained by experiment, this replacement will undoubtedly simplify the spindle-bearing milling system. But with the increase in the bearing clearance, the spindle milling system will present obvious nonlinear behaviors, and the nonlinear Hertz contact bearing stiffness will take over. Isolated islands of chatter vibration, which are induced by the nonlinear nonsmooth bearing Hertz stiffness, can be found exist in milling processes in large bearing clearance conditions.  相似文献   

19.
任志强  郭峰  王静 《摩擦学学报》2013,33(6):586-593
使用能够模拟推力球轴承工作的光干涉油膜测量系统,在静态时基于Hertz接触理论测量得到了该轴承座圈滚道的波纹度变化,并测量了轴承工作一周的油膜变化情况.依据试验参数进行了钢球与玻璃盘接触以及钢球与座圈滚道接触的弹性流体动压润滑(EHL)数值分析.试验和理论分析均较好地验证了表面波纹度对润滑状态的影响,发现推力球轴承运动时油膜的变化和滚道的表面波纹度密切相关.  相似文献   

20.
内圈离心位移对高速角接触球轴承刚度的影响   总被引:2,自引:0,他引:2  
以弹性力学理论、滚动轴承动力学和沟道控制理论为基础,计算了角接触球轴承内圈在离心力作用下的径向位移,给出了计及内圈离心位移影响时,高速角接触球轴承滚动体与内、外圈的接触刚度与轴承整体的径向刚度、轴向刚度、角刚度的计算方法和相应程序。对7012/CD轴承的计算结果表明,轴承内圈外径的离心位移随转速增加而增大,在高速条件下其值较大,不容忽视;轴承内圈离心位移对内圈接触刚度和轴承径向刚度影响较大,导致内圈接触刚度和轴承径向刚度相对增大;对外圈的接触刚度、轴承轴向刚度和角刚度的影响很小;随着转速的增加与内圈离心位移的增大,对轴承内圈接触刚度与轴承径向刚度的影响会更加明显。因此,为使高速角接触球轴承的刚度分析更加精确、更加接近实际,必须考虑内圈离心位移的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号