首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In this work the activity of three carbohydrates (sucrose, glucose and fructose) in highly concentrated aqueous solutions was studied along with its effect on the adsorption behaviour of the investigated compounds. Activities of individual sugars in aqueous solutions of single solute as well as in binary mixtures were quantified on the basis of solubility properties. Solid–liquid equilibria of sugars were correlated with the NRTL (nonrandom, two liquid) model of activity coefficient formulation. Activities of individual sugars were incorporated into the single component adsorption isotherm model, which reproduced accurately the course of the adsorption equilibria of sugars in aqueous solutions obtained experimentally in previous work using an ion-exchange resin. Activities of sugars determined in binary solute systems along with the single component isotherms were used to predict competitive adsorption equilibria. To calculate adsorbed phase concentrations of individual sugars in binary mixtures the adsorbed solution theory was adopted. The isotherm shapes calculated were compared to the data of competitive adsorption from the former study and found to be able to describe these experimental results.  相似文献   

2.
Adsorption equilibria of pure gases and binary gas mixtures can be measured with a new magnetic suspension balance. For this measurement no additional concentration measurement is required, neither for the gas phase nor for the adsorbed phase. The new instrument allows gravimetric adsorption measurements in a wide range of pressure (UHV...50 MPa) and temperature (210 K...570 K) to be performed. The experimental procedure and the instrument set up is fairly easy and can be compared to pure gas adsorption experiments. The new instrument and experimental procedure have been tested by performing coadsorption measurements with CO/H2 mixtures on a commercial 5A zeolite.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Adsorption of the three carbohydrates sucrose, glucose and fructose from aqueous solutions was investigated on an ion-exchange resin. The adsorption equilibrium of single components, binary and ternary mixtures was quantified by frontal analysis and the adsorption-desorption method. The experiments covered a concentration range up to 600 g/L at 60 degrees C and 80 degrees C. Within this range the adsorption isotherms of carbohydrates exhibited anti-Langmuirian behavior. Data of mixture adsorption revealed reversed competitive (synergistic or cooperative) effects, i.e., an increase of the concentration of one component of the mixture enhanced the adsorption of others. To model such an adsorption behavior the anti-Langmuir model has been used. The isotherm parameters determined for single components were used to simulate the competitive adsorption equilibria through the IAS (ideal adsorbed solution) theory. Finally, dynamic concentration profiles of multicomponent mixtures have been recorded. The shapes of adsorption and desorption curves confirmed the observed competitive effects found in the equilibrium studies. The breakthrough curves measured were simulated using the equilibrium theory as well as a numerical solution of the equilibrium dispersive model.  相似文献   

4.
以实验数据为依据, 结合双Langmuir模型研究了用高比表面活性碳微球材料分离H2中少量CO2的行为. 在实验中, 用高精度的IGA-003重力吸附仪测定了温度为298、273 和268 K, 压力在0-1.8 MPa范围内CO2、H2及n(CO2):n(H2)=1:9混合物在活性碳微球中的吸附等温线. 比较不同吸附模型的计算结果与实验数据, 结果表明, 双Langmuir模型与实验结果拟合得较好; 而且通过结合理想吸附溶液理论, 该模型可以准确地计算不同的混合物体系(包括H2-CO2体系)的吸附量和吸附选择性. 利用该模型求解了不同温度下各组分的分吸附量, 得到了CO2的吸附选择性;在268 K和1.7 MPa下, CO2的吸附选择性可达到73.4, 表明活性碳微球是一种优秀的吸附H2中少量CO2的材料.  相似文献   

5.
Adsorption equilibria of the gases CH4, N2, and CO2 and their binary and ternary mixtures on activated carbon Norit R1 Extra have been measured in the pressure range 0 P 6 MPa at T = 298 K. Pure gas adsorption equilibria were measured gravimetrically. Coadsorption data of the three binary mixtures CH4/N2, CH4/CO2, and CO2/N2 were obtained by the volume-gravimetric method. Isotherms of five ternary mixtures CH4/CO2/N2 were measured using the volumetric-chromatographic method. First, we present in a short overview the method and procedure of measurement. In a second part, the measured data of pressures, surface excess amounts adsorbed and absolute amounts adsorbed are presented and analyzed. In the last part of the paper the resulting pure gas adsorption data are correlated using a generalized dual-site Langmuir isotherm. Mixture adsorption can be predicted by this model using only pure component parameters with fair accuracy. Results are presented and discussed in several tables and figures.  相似文献   

6.
We use a fast density functional theory (a "slab-DFT") and the polydisperse independent ideal slit-pore model to predict gas mixture adsorption in active carbons. The DFT is parametrized by fitting to pure gas isotherms generated by Monte Carlo simulation of adsorption in model graphitic slit-pores. Accurate gas molecular models are used in our Monte Carlo simulations with gas-surface interactions calibrated to a high surface area carbon, rather than a low surface area carbon as in all previous work of this type, as described in part 1 of this work. We predict the adsorption of binary mixtures of carbon dioxide, methane, and nitrogen on two active carbons up to about 30 bar at near-ambient temperatures. We compare two sets of results; one set obtained using only the pure carbon dioxide adsorption isotherm as input to our pore characterization process, and the other obtained using both pure gas isotherms as input. We also compare these results with ideal adsorbed solution theory (IAST). We find that our methods are at least as accurate as IAST for these relatively simple gas mixtures and have the advantage of much greater versatility. We expect similar results for other active carbons and further performance gains for less ideal mixtures.  相似文献   

7.
The Isotope Exchange Technique (IET) was used to simultaneously measure pure and binary gas adsorption equilibria and kinetics (self-diffusivities) of CH4 and N2 on pelletized 4A zeolite. The experiment was carried out isothermally without disturbing the adsorbed phase. CH4 was selectively adsorbed over N2 by the zeolite because of its higher polarizability. The multi-site Langmuir model described the pure gas and binary adsorption equilibria fairly well at three different temperatures. The selectivity of adsorption of CH4 over N2 increased with increasing pressure at constant gas phase composition and temperature. This curious behavior was caused by the differences in the sizes of the adsorbates. The diffusion of CH4 and N2 into the zeolite was an activated process and the Fickian diffusion model described the uptake of both pure gases and their mixtures. The self-diffusivity of N2 was an order of magnitude larger than that for CH4. The pure gas self-diffusivities for both components were constants over a large range of surface coverages (0 < < 0.5). The self-diffusivities of CH4 and N2 from their binary mixtures were not affected by the presence of each other, compared to their pure gas self-diffusivities at identical surface coverages.  相似文献   

8.
Adsorption of binary mixtures onto activated carbon Norit R1 for the system nitrogen-methane-carbon dioxide was investigated over the pressure range up to 15 MPa. A new model is proposed to describe the experimental data. It is based on the assumption that an activated carbon can be characterized by the distribution function of elements of adsorption volume (EAV) over the solid-fluid potential. This function may be evaluated from pure component isotherms using the equality of the chemical potentials in the adsorbed phase and in the bulk phase for each EAV. In the case of mixture adsorption a simple combining rule is proposed, which allows determining the adsorbed phase density and its composition in the EAV at given pressure and compositions of the bulk phase. The adsorbed concentration of each adsorbate is the integral of its density over the set of EAV. The comparison with experimental data on binary mixtures has shown that the approach works reasonably well. In the case of high-pressure binary mixture adsorption, when only total amount adsorbed was measured, the proposed model allows reliably determining partial amounts of the adsorbed components.  相似文献   

9.
With the calorimetric (adsorption heat versus coverage) curve also measured together with the adsorption isotherm, the simultaneous use of both curves showed that there were two phases of adsorption in the adsorption of methanol, dimethyl ether, ethene and propane in SAPO-34. The dual-site Langmuir equation gave good fits to the adsorption data to support the interpretation that a second (type 2) adsorption phase occurred in the high-pressure region in addition to a first (type 1) adsorption phase on the acid sites at lower pressures. Adsorption experiments and calculations using binary gas mixtures showed that due to the existence of two types of adsorption, the multicomponent Langmuir isotherm equation (Langmuir competitive adsorption model) calculated incorrect surface concentrations when the concentrations were high. In contrast, the ideal adsorbed solution theory (IAST) calculated correct surface concentrations in the adsorption of mixtures.  相似文献   

10.
A new model has been developed for predicting mixed-gas adsorption equilibria from multicomponent gas mixtures based on the dual-process Langmuir (DPL) formulation. It predicts ideal, nonideal, and azeotropic adsorbed solution behavior from a knowledge of only single-component adsorption isotherms and the assertion that each binary pair in the gas mixture correlates in either a perfect positive (PP) or perfect negative (PN) fashion on each of the two Langmuir sites. The strictly PP and strictly PN formulations thus provide a simple means for determining distinct and absolute bounds of the behavior of each binary pair, and the PP or PN behavior can be confirmed by comparing predictions to binary experimental adsorption equilibria or from intuitive knowledge of binary pairwise adsorbate-adsorbent interactions. The extension to ternary and higher-order systems is straightforward on the basis of the pairwise additivity of the binary adsorbent-adsorbate interactions and two rules that logically restrict the combinations of PP and PN behaviors between binary pairs in a multicomponent system. Many ideal and nonideal binary systems and two ternary systems were tested against the DPL model. Each binary adsorbate-adsorbent pair exhibited either PP or PN behavior but nothing in between. This binary information was used successfully to predict ternary adsorption equilibria based on binary pairwise additivity. Overall, predictions from the DPL model were comparable to or significantly better than those from other models in the literature, revealing that its correlative and predictive powers are universally applicable. Because it is loading-explicit, simple to use, and also accurate, the DPL model may be one of the best equilibrium models to use in gas-phase adsorption process simulation.  相似文献   

11.
Adsorption of a mixture of benzene and chlorobenzene from the gas phase on the carbon adsorbent D4609 (Purolite Int.) obtained by the pyrolysis of hypercrosslinked polystyrene was studied. The adsorption of the binary vapor mixture is satisfactorily described in terms of the theory of ideal adsorption solution. Specific features of the adsorption behavior of mixtures on this adsorbent are discussed.  相似文献   

12.
运用Langmuir等温线方程和理想吸附溶液理论(IAST)两种方法计算了SAPO-34在混合气体中的单个物种表面浓度,并对比了计算值与实验值的吻合程度. 考察了两个二元混合体系,分别为80 ℃的甲醇和二甲醚以及25 ℃的二甲醚和乙烯混合气,发现IAST计算值在实验压力范围内均与实验结果吻合;但是Langmuir理论计算值仅在酸性位覆盖率低于1/3时与实验值吻合较好,随着压力增加严重偏离实验值,而且Langmuir理论不能描述随压力增加低饱和吸附量物种覆盖率降低的现象. 因此,针对包含不同饱和吸附量组分的混合气,Langmuir理论仅适用于描述表面浓度低时的反应动力学,当表面浓度高时应该采用IAST方法.  相似文献   

13.
Competitive adsorption is the usual situation in real applications, and it is of critical importance in determining the overall performance of an adsorbent. In this study, the competitive adsorption characteristics of all the combinations of binary mixtures of aqueous metal ion species Ca2+(aq), Cd2+(aq), Pb2+(aq), and Hg2+(aq) on a functionalized activated carbon were investigated. The porous structure of the functionalized active carbon was characterized using N2 (77 K) and CO2 (273 K) adsorption. The surface group characteristics were examined by temperature-programmed desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, acid/base titrations, and measurement of the point of zero charge (pHpzc). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for both single-ion and binary mixtures of these species. Hydrolysis of metal species in solution may affect the adsorption, and this is the case for adsorption of Hg2+(aq) and Pb2+(aq). Competitive adsorption decreases the amounts of individual metal ions adsorbed, but the maximum amounts adsorbed still follow the order Hg2+(aq) > Pb2+(aq) > Cd2+(aq) > Ca2+(aq) obtained for single metal ion adsorption. The adsorption isotherms for single metal ion species were used to develop a model for competitive adsorption in binary mixtures, involving exchange of ions in solution with surface proton sites and adsorbed metal ions, with the species having different accessibilities to the porous structure. The model was validated against the experimental data.  相似文献   

14.
Combining experimental knowledge with molecular simulations, we investigated the adsorption and separation properties of double-walled carbon nanotubes (DWNTs) against flue/synthetic gas mixture components (e.g. CO(2), CO, N(2), H(2), O(2), and CH(4)) at 300 K. Except molecular H(2), all studied nonpolar adsorbates assemble into single-file chain structures inside DWNTs at operating pressures below 1 MPa. Molecular wires of adsorbed molecules are stabilized by the strong solid-fluid potential generated from the cylindrical carbon walls. CO(2) assembly is formed at very low operating pressures in comparison to all other studied nonpolar adsorbates. The adsorption lock-and-key mechanism results from perfect fitting of rod-shaped CO(2) molecules into the cylindrical carbon pores. The enthalpy of CO(2) adsorption in DWNTs is very high and reaches 50 kJ mol(-1) at 300 K and low pore concentrations. In contrast, adsorption enthalpy at zero coverage is significantly lower for all other studied nonpolar adsorbates, for instance: 35 kJ mol(-1) for CH(4), and 14 kJ mol(-1) for H(2). Applying the ideal adsorption solution theory, we predicted that the internal pores of DWNTs have unusual ability to differentiate CO(2) molecules from other flue/synthetic gas mixture components (e.g. CO, N(2), H(2), O(2), and CH(4)) at ambient operating conditions. Computed equilibrium selectivity for equimolar CO(2)-X binary mixtures (where X: CO, N(2), H(2), O(2), and CH(4)) is very high at low mixture pressures. With an increase in binary mixture pressure, we predicted a decrease in equilibrium separation factor because of the competitive adsorption of the X binary mixture component. We showed that at 300 K and equimolar mixture pressures up to 1 MPa, the CO(2)-X equilibrium separation factor is higher than 10 for all studied binary mixtures, indicating strong preference for CO(2) adsorption. The overall selective properties of DWNTs seem to be superior, which may be beneficial for potential industrial applications of these novel carbon nanostructures.  相似文献   

15.
Simultaneous competitive adsorption from solutions of mixtures of poly(butyl methacrylate) and polystyrene and adsorption of each component from binary solutions have been studied for three ratios of the adsorbent mass to the solution volume, A/V. It was found that adsorption from both binary and ternary solutions strongly depends on the amount of an adsorbent, adsorption of poly(butyl methacrylate) being preferential. The characteristic adsorption isotherms of both polymers were constructed under conditions of equal equilibrium concentration of each component to estimate the parameters of preferential adsorption and their dependence on the A/V ratio. It was found that the A/V effect plays an important role in adsorption from polymer mixtures and determines the peculiarities of adsorption from polymer mixtures as well as from solution of single polymers. Changing the A/V ratio may be one way to regulate the composition of an adsorption layer consisting of two chemically different polymers. The reasons for the A/V effect are considered in the framework of the concept of the plurality of adsorption equilibria between two chemically different components and between fractions of different molecular mass of each component having various absorbability.  相似文献   

16.
The adsorption of pure methane and ethane in BPL activated carbon has been measured at temperatures between 264 and 373 K and at pressures up to 3.3 MPa with a bench-scale high-pressure open-flow apparatus. The same apparatus was used to measure the adsorption of binary methane/ethane mixtures in BPL at 301.4 K and at pressures up to 2.6 MPa. Thermodynamic consistency tests demonstrate that the data are thermodynamically consistent. In contrast to two sets of data previously published, we found that the adsorption of binary methane/ethane in BPL behaves ideally (in the sense of obeying ideal adsorbed solution theory, IAST) throughout the pressure and gas-phase composition range studied. A Tian-Calvet type microcalorimeter was used to measure low-pressure isotherms, the isosteric heats of adsorption of pure methane and ethane in BPL activated carbon, and the individual heats of adsorption in binary mixtures, at 297 K and at pressures up to 100 kPa. The mixture heats of adsorption were consistent with IAST.  相似文献   

17.
The adsorption capacity and selectivity of carbon dioxide and nitrogen at 298 K have been evaluated for two series of MMOFs built on metal paddle-wheel building units, including non-interpenetrated Zn(BDC)(TED)(0.5) (1), Zn(BDC-OH)(TED)(0.5) (2), Zn(BDC-NH(2))(TED)(0.5) (3), and interpenetrated Zn(BDC)(BPY)(0.5) (4), Zn(BDC)(DMBPY)(0.5) (5), Zn(NDC)(BPY)(0.5) (6) and Zn(NDC)(DMBPY)(0.5) (7) framework structures. The ideal adsorbed solution theory (IAST) has been employed to predict the adsorption selectivity of CO(2)-N(2) binary mixtures on all seven MMOFs using single-component experimental adsorption isotherm data. The applicability of IAST to these systems is verified by GCMC simulations performed on both single- and multi-component gases.  相似文献   

18.
L. Hamon  L. Chenoy  G. De Weireld 《Adsorption》2014,20(2-3):397-408
The absolute adsorption isotherms are necessary to correctly evaluate the selectivity of the adsorbent material or to design adsorption processes at high pressure (e.g., H2 purification from syngas processes, removal of acid gas from natural gas,…). The aim of this work is thus to propose an easy method to correct the buoyancy effect of the bulk phase on the adsorbed phase volume during both pure gas and gas mixtures adsorption for pressures up to 10 MPa. The potential theory of adsorption and the Dubinin–Radushkevich relation are adapted by introducing mixing parameters based on simple Berthelot rules. The concept of internal pressure used to characterize the adsorbed phase is also adapted for mixtures. The method is then improved on a commercial activated carbon (AC), when adsorbing pure H2S and CH4, and their mixtures up to 5 MPa. The study points out the importance to carefully consider the buoyancy effect of the bulk phase on the adsorbed phase volume. Its impact on the adsorbent material selectivity at high pressures could affect the design and the performances of PSA or TSA processes. For example, only considering the excess adsorption data leads to an apparent selectivity 13 % greater than the absolute one for a concentration of 6 ppm of H2S in a CH4 matrix at 5 MPa (298 K) on the AC.  相似文献   

19.
We report a molecular simulation study for Cu-BTC metal-organic frameworks as carbon dioxide-methane separation devices. For this study we have computed adsorption and diffusion of methane and carbon dioxide in the structure, both as pure components and mixtures over the full range of bulk gas compositions. From the single component isotherms, mixture adsorption is predicted using the ideal adsorbed solution theory. These predictions are in very good agreement with our computed mixture isotherms and with previously reported data. Adsorption and diffusion selectivities and preferential sitings are also discussed with the aim to provide new molecular level information for all studied systems.  相似文献   

20.
The adsorption equilibrium and kinetics of single and binary component copper ions and phenol onto powdered activated carbon (PAC), alginate beads and alginate-activated carbon beads (AAC) were studied. Adsorption equilibrium data for single component copper ions and phenol onto the adsorbents could be represented by the Langmuir equation. Multicomponent equilibrium data were correlated by the extended Langmuir and ideal adsorbed solution theory (IAST). The IAST gave the best fit to our data. The amount of copper ions adsorbed onto the AAC beads in the binary component was greater than that of phenol. The internal diffusion coefficients were determined by comparing the experimental concentration curves with those predicted from surface diffusion and pore diffusion model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号