首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用分子模拟与吸附理论研究了天然气成分在有序介孔碳材料CMK-3上的吸附和分离.巨正则系综蒙特卡罗(GCMC)模拟表明,CH4和CO2气体的较优存储条件分别为208 K、4 MPa和298 K、6 MPa,其最大超额吸附量分别为10.07和14.85 mmol· g-1.基于双位Langmuir-Freundlich (DSLF)模型,使用理想吸附溶液理论(IAST)预测了不同二元混合物在CMK-3中的分离行为,发现吸附选择性Sco2/CH4与ScH4/N2比较接近,在298 K和4 MPa下约等于3,而N2-CO2体系中的CO2吸附选择性较高,可达到7.5,说明CMK-3是一种适合吸附和分离天然气组分的碳材料.  相似文献   

2.
采用静态吸附法研究了松香基羧基化聚合物微球对Pb~(2+)的吸附性能。实验结果表明,在p H=6.0,固液比分别为0.5g/L和3g/L,初始浓度为100mg/L,293K条件下,松香基羧基化聚合物微球对Pb~(2+)的最大吸附量分别为15.28mg/g和10.73mg/g。吸附动力学研究表明,该吸附过程符合伪二级吸附动力学方程。吸附热力学研究表明,该吸附过程符合Langmuir等温吸附模型,ΔG0,ΔS0,ΔH0,表明该吸附过程是自发的放热过程。脱附再生实验表明,经过5次重复再生,其吸附量下降了29%,微球具有重复利用的潜质。XPS测试表明Pb~(2+)吸附在微球的表面上。  相似文献   

3.
采用巨正则Monte Carlo(GCMC)方法讨论了不同温度、压力及管径下,碳纳米管对H2S/N2混合物(主体相体积比为1∶99)的吸附分离选择性.结果表明,随着碳纳米管管径的增大,H2S的吸附选择性先增加后减小;而(11,0)碳纳米管(管径为0.86 nm)对H2S的选择性最高,这种选择性与管径的关系是由几何效应和能量效应共同决定的.针对(11,0)碳纳米管讨论了温度和压力对H2S吸附量和选择性的影响.模拟结果表明,随着温度上升,H2S的吸附量和选择性都呈先增加后减小的趋势;随着压力增加,H2S的吸附量和选择性都有所下降.本文模拟结果可为含硫气体混合物的吸附分离提供一定参考.  相似文献   

4.
氢气在碳纳米管基材料上的吸附-脱附特性   总被引:16,自引:0,他引:16  
利用高压容积法测定多壁碳纳米管(MWCNTs)及钾盐修饰的相应体系(K+-MWCNTs)的储氢容量,并用程序升温脱附(TPD)方法表征研究氢气在MWCNTs基材料上的吸附-脱附特性.结果表明,在经纯化MWCNTs上,室温、9.0 MPa实验条件下氢的储量可达1.51%(质量分数);K+盐对MWCNTs的修饰对增加其储氢容量并无促进效应,但相应化学吸附氢物种的脱附温度有所升高;K+的修饰也改变了MWCNTs表面原有的疏水性质.在低于723 K的温度下,H2/MWCNTs体系的脱附产物几乎全为氢气;773 K以上高温脱附产物不仅含H2,也含有CH4、C2H4、C2H2等C1/C2烃混合物;H2/K+-MWCNTs储氢试样的脱附产物除占主体量的H2及少量C1/C2烃混合物外,还含水汽,其量与吸附质H2源水汽含量密切相关.H2在碳纳米管基材料上吸附兼具非解离 (即分子态) 和解离(即原子态)两种形式.  相似文献   

5.
 用等体积浸渍法制备了ZrO2-SiO2(ZrSiO)表面复合氧化物负载的Cu-Ni催化剂,并用IR,TPR,TPD及微反技术考察了K2O助剂对CO2和CH3OH在Cu-Ni/ZrSiO催化剂表面上的吸附及合成碳酸二甲酯(DMC)反应性能的影响.结果表明:加入K2O助剂使CO2在催化剂表面上的吸附增强,当n(K)/n(Cu+Ni)=15%时,CO2在催化剂表面上吸附后生成K2CO3;CH3OH在催化剂表面上的解离吸附态(CH3O-和H+)的吸附减弱;CO2和CH3OH在Cu-Ni/ZrSiO催化剂表面上反应的主要产物为DMC,H2O,CO和CH2O;随着K2O助剂的加入,反应转化率及DMC选择性提高,副产物(CO和CH2O)的选择性下降.根据实验结果,探讨了K2O对催化剂表面活性中心电荷分布的影响.  相似文献   

6.
以可溶性淀粉为原料,采用反相悬浮聚合得到交联淀粉微球(Cross-linked starch microspheres CSMs),考察其在不同介质中对Co2+的静态吸附行为及其对不同金属离子的吸附选择性,测定了淀粉微球对Co2+的吸附等温线,分析了其吸附的动力学特征。用红外光谱仪和X射线衍射仪对CSMs及其吸附产物的结构特征进行了对照分析,探讨了吸附机理。在实验条件下,CSMs对Co2+的吸附模式同时符合Langmuir和Freundlich等温方程,表观吸附速率常数k308K为0.0686min-1。CSMs对Co2+的吸附作用破坏了CSMs的结晶结构。交联淀粉微球对Co2+具有较好的选择吸附性,吸附量受介质种类、浓度的影响。这些结果为含钴废水的处理及金属离子吸附分离提供了有益的帮助。  相似文献   

7.
利用自制的含羧基功能基团的松香基聚合物微球,研究其对水中亚甲基蓝(MB)的静态吸附性能。实验结果表明,在固液比为1∶250 g·m L~(-1)、p H=10.14、在313 K吸附300 min时,微球对MB的吸附量达到了38.1 mg·g~-,重复吸附5次后吸附率保持在87%。通过吸附热力学实验表明,该吸附符合Langmuir等温吸附模型,△S=24.66 J·mol~(-1)·K~(-1),△H=5.92 k J·mol~(-1),吸附△G0,该吸附是自发的吸热过程,升高温度有利于吸附量的增大。根据动力学研究可知,该吸附过程符合准二级吸附动力学。  相似文献   

8.
研究了一些氧化物的H2-TPR及CO-TPR行为,结果发现,Co3O4/Al2O3,NiO/SiO2,NiO和Pd/NiO的H2-TPR温度要低于它们的CO-TPR温度,特别是Pd/NiO样品,它的H2-TPR温度为598K,而其CO-TPR温度高达949K,差别为351K,因此有可能利用Pd/NiO在一定温度下选择性地与CO中的H2反应而将其除去. 实验结果表明,Pd/NiO可在603K及4000h-1的条件下从H2(0.34%),CO(50%)和N2(余)的混合气中选择性地除去90%以上的H2,吸氢容量为每克样品55mL标准态H2.  相似文献   

9.
用等体积浸渍法制备了MoO3 SiO2 (MoSiO)表面复合氧化物负载的Cu Ni K2 O催化剂。利用IR ,TPR ,TPD以及微反技术研究了K2 O助剂对CO2 和CH3OH在Cu Ni MoSiO催化剂表面上吸附和合成DMC(碳酸二甲酯 )反应性能的影响。结果表明 :K2 O助剂的加入 ,使CO2 在催化剂表面吸附强度增加 ,当K2 O含量达Cu Ni总量的 15 %时 ,CO2 在催化剂表面上吸附后生成K2 CO3;CH3OH在催化剂表面上的解离吸附态 (CH3O- H )的吸附强度减弱 ;CO2 和CH3OH在Cu Ni K2 O MoSiO催化剂表面反应主要产物为DMC ,H2 O ,CO和CH2 O。随着K2 O助剂的加入 ,反应转化率在 10 %之前增加 ,之后下降 ,DMC选择性稍有提高。副产物 (CO和CH2 O)的选择性下降。根据实验结果探讨了K2 O对催化剂表面活性中心的电荷分布的影响。  相似文献   

10.
采用浸渍法制备了Co-Pt-ZrO2/γ-Al2O3催化剂,对其进行了BET、XRD和TPR等表征,并在浆态床反应器上考察了焙烧温度和还原温度对催化剂费托合成反应性能的影响.结果表明,焙烧温度过高,容易造成Co物种和载体间的相互作用增强,使部分氧化钻颗粒聚集或烧结,导致催化剂的F-T合成反应活性和C5+烃选择性降低.还原温度较低时,钴物种不能充分还原,CO加氢活性低,甲烷选择性高,重质烃选择性低;还原温度过高,则可能造成活性物种的烧结,反而降低了催化剂的活性和重质烃选择性.在原料气n(H2)/n( CO)=2.0、483 K、2.4 MPa和空速3.6 L/( gcat·h)的条件下,31.08% Co~0.11%Pt ~ 7.16% ZrO2/Al2O3催化剂在673 K焙烧.纯H2下653 K还原后,其费托性能最佳;CO转化率为27.0%,C5+的选择性为83.0%.  相似文献   

11.
An experimental apparatus which allows to measure adsorption isotherms for binary, ternary or quaternary mixtures for pressures between vacuum and 5.0 MPa and temperatures between 263 K and 373 K is presented. This system couples gravimetric and chromatographic techniques. The use of a mass spectrometer as gas analyzer allows to investigate a large variety of gases (such as carbon dioxide, hydrogen sulfide, mercaptans). In this paper, we measure the binary adsorption of hydrogen sulfide in a methane matrix on a commercial activated carbon at 1.0 MPa and at 298 K. Molar ratio in hydrogen sulfide is between 10 mol. ppm and 3 mol.%. Experimental results are then compared to simulated ones. The model which is tested is the classical Ideal Adsorbed Solution theory. This simulation step requires the pure gas equilibrium data obtained and fitted with the Langmuir’s law, which are also presented here.  相似文献   

12.
In this work, we report new experimental data of pure and binary adsorption equilibria of carbon dioxide and methane on the activated carbon RB2 at 273 and 298 K. The pressure range studied were 0–3.5 MPa for pure gases and 0–0.1 MPa for mixtures. The combination of the generalized Dubinin model to describe the pure CO2 and CH4 isotherms with the IAST (Ideal Adsorbed Solution Theory) for the mixtures provide a method for the calculation of the binary adsorption equilibria. This formulation predicts with acceptable accuracy the binary adsorption data and can easily be integrated in general dynamic simulation of PSA (pressure swing adsorption process) adsorption columns. It involves only three parameters, independent of the temperature, and directly determined with only one adsorption isotherm of CO2.  相似文献   

13.
Equilibrium adsorption of nitrogen, carbon dioxide, and argon was examined on the sodium and pyridinium forms of montmorillonite and on the hydrogen form of bentonite. The measurements were carried out at 303, 343, 373, and 400 K over pressure ranges of 0.1–90 MPa (Ar and N2) and 0.1–6 MPa (CO2). The amount of nitrogen vapor adsorbed was determined at 77 K and pressures from 0 to 0.1 MPa. The porous structure parameters of the studied samples were determined using adsorption isotherms of nitrogen, argon, and carbon dioxide vapors. At elevated temperatures and pressures >10 MPa, Ar and N2 adsorption processes on the Na-form of montmorillonite and Ar adsorption on bentonite are activated, since the amounts of the gases adsorbed and adsorption volumes increase with temperature. No activated adsorption is observed for carbon dioxide adsorption on these adsorbents. A comparison of the excess adsorption isotherms of gases on the Py-form of montmorillonite and H-form of bentonite shows that adsorption in micropores predominates for the Py-form of montmorillonite, whereas for the Na-form of bentonite and H-form of bentonite adsorption occurs mainly in meso- and macropores.  相似文献   

14.
The adsorption of pure methane and ethane in BPL activated carbon has been measured at temperatures between 264 and 373 K and at pressures up to 3.3 MPa with a bench-scale high-pressure open-flow apparatus. The same apparatus was used to measure the adsorption of binary methane/ethane mixtures in BPL at 301.4 K and at pressures up to 2.6 MPa. Thermodynamic consistency tests demonstrate that the data are thermodynamically consistent. In contrast to two sets of data previously published, we found that the adsorption of binary methane/ethane in BPL behaves ideally (in the sense of obeying ideal adsorbed solution theory, IAST) throughout the pressure and gas-phase composition range studied. A Tian-Calvet type microcalorimeter was used to measure low-pressure isotherms, the isosteric heats of adsorption of pure methane and ethane in BPL activated carbon, and the individual heats of adsorption in binary mixtures, at 297 K and at pressures up to 100 kPa. The mixture heats of adsorption were consistent with IAST.  相似文献   

15.
The adsorption isotherms of hydrogen on super activated carbon were measured systematically, covering a temperature range of 93-293 K at 20 K intervals and pressures up to 7 MPa. All the experimental data were linearized by adopting the coordinates ln ln(n) vs 1/(ln P). The results indicate that the adsorption limit (P(lim), n(lim)) exists virtually at high pressure and has a certain physical meaning. Based on the adsorption limit, further analyses were carried out by modeling the adsorption isotherms in the coordinates ln(n(lim)/n) vs ln(RT(ln(P(lim)/P) and a linear comprehensive adsorption model was proposed in the form n (lim)=n.exp(psi T+lambda/T-c/) (beta).[RT ln( P (lim)P )] (b) which can predict the adsorption isotherm of hydrogen on activated carbon in supercritical conditions.  相似文献   

16.
Single gas adsorption isotherms of methane and carbon dioxide on micro-porous Norit RB1 activated carbon were determined in a gravimetric analyser in the temperature range of 292 to 349 K and pressures to 0.8 Mpa. Furthermore binary isotherms of carbon dioxide and methane mixtures were determined at 292 K and pressures up to 0.65 MPa. Adsorbed phase compositions were determined from the gravimetric data by the rigorous thermodynamic method of Van Ness.These experimental binary equilibrium data were compared with equilibrium data calculated by the Ideal Adsorbed Solution (IAS) model. Only moderate agreement could be obtained.Finally, activity coefficients, accounting for the non-ideality of the adsorbate mixture, were calculated from the experimental data. The Wilson equation, derived for bulk solutions, was fitted on these activity data and the Wilson interaction parameters were determined. The Wilson equation proved to correlate the experimental data reasonably. However, the Wilson interaction parameters are not only completely different from those found for bulk solutions, but also the physical interpretation of these parameter values is completely lacking.It is concluded that new solution models should be developed encompassing both non-ideal solution behaviour and surface heterogeneity.  相似文献   

17.
Adsorption of binary mixtures onto activated carbon Norit R1 for the system nitrogen-methane-carbon dioxide was investigated over the pressure range up to 15 MPa. A new model is proposed to describe the experimental data. It is based on the assumption that an activated carbon can be characterized by the distribution function of elements of adsorption volume (EAV) over the solid-fluid potential. This function may be evaluated from pure component isotherms using the equality of the chemical potentials in the adsorbed phase and in the bulk phase for each EAV. In the case of mixture adsorption a simple combining rule is proposed, which allows determining the adsorbed phase density and its composition in the EAV at given pressure and compositions of the bulk phase. The adsorbed concentration of each adsorbate is the integral of its density over the set of EAV. The comparison with experimental data on binary mixtures has shown that the approach works reasonably well. In the case of high-pressure binary mixture adsorption, when only total amount adsorbed was measured, the proposed model allows reliably determining partial amounts of the adsorbed components.  相似文献   

18.
Adsorption equilibria for binary gas mixtures (methane-carbon dioxide, methane-ethane, and carbon dioxide-ethane) on the graphitized carbon black STH-2 were measured by the open flow method at 293.2 K. The experimental pressure range was (0 to 1.6) MPa. The extended Langmuir (EL) model and the ideal adsorption solution theory (IAST) have been adopted to predict the equilibria of binary gas mixtures. The results indicate that gas mixtures adsorbed on the homogeneous surface of STH-2 exhibit the nonideal behavior, which is mainly induced by adsorbate-adsorbate interactions. The real adsorption solution theory (RAST) has been used to analyze the property of the adsorbed mixtures. The activity coefficients have been correlated with the Wilson equation. The investigation demonstrates that the nonideality of adsorbed phase is completely dissimilar with the bulk liquid phase. The adsorption of the heavier component would benefit the adsorption of the lighter component.  相似文献   

19.
Adsorption of carbon dioxide and methane in porous activated carbon and carbon nanotube was studied experimentally and by Grand Canonical Monte Carlo (GCMC) simulation. A gravimetric analyzer was used to obtain the experimental data, while in the simulation we used graphitic slit pores of various pore size to model activated carbon and a bundle of graphitic cylinders arranged hexagonally to model carbon nanotube. Carbon dioxide was modeled as a 3-center-Lennard-Jones (LJ) molecule with three fixed partial charges, while methane was modeled as a single LJ molecule. We have shown that the behavior of adsorption for both activated carbon and carbon nanotube is sensitive to pore width and the crossing of isotherms is observed because of the molecular packing, which favors commensurate packing for some pore sizes. Using the adsorption data of pure methane or carbon dioxide on activated carbon, we derived its pore size distribution (PSD), which was found to be in good agreement with the PSD obtained from the analysis of nitrogen adsorption data at 77 K. This derived PSD was used to describe isotherms at other temperatures as well as isotherms of mixture of carbon dioxide and methane in activated carbon and carbon nanotube at 273 and 300 K. Good agreement between the computed and experimental isotherm data was observed, thus justifying the use of a simple adsorption model.  相似文献   

20.
Simulations of the thermal effects during adsorption cycles are valuable tools for the design of efficient adsorption-based systems such as gas storage, gas separation and adsorption-based heat pumps. An analytical representation of the measured adsorption data over the wide operating pressure and temperature swing of the system is necessary for the calculation of complete mass and energy conservation equations. In Part 1, the Dubinin-Astakhov (D-A) model is adapted to model hydrogen, nitrogen, and methane adsorption isotherms on activated carbon at high pressures and supercritical temperatures assuming a constant microporous adsorption volume. The five parameter D-A type adsorption model is shown to fit the experimental data for hydrogen (30 to 293 K, up to 6 MPa), nitrogen (93 to 298 K, up to 6 MPa), and for methane (243 to 333 K, up to 9 MPa). The quality of the fit of the multiple experimental adsorption isotherms is excellent over the large temperature and pressure ranges involved. The model’s parameters could be determined as well from only the 77 K and 298 K hydrogen isotherms without much reducing the quality of the fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号