首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The electrogenerated chemiluminescence (ECL) of the Ru(bpy)32+ (bpy, 2,2′-bipyridine)/tri-n-propylamine (TPrA) system can be produced at an oxidation-potential well before the oxidation of Ru(bpy)32+. Here, we describe the unique features of the low-oxidation-potential (LOP) ECL. The LOP ECL exhibited strong dependence on solution pH with the maximum emission at pH  7.7. Compared with the conventional ECL, the LOP ECL was much more significantly diminished at high pH (>10), probably due to the short lifetime of TPrA cation radical which is a crucial intermediate for the LOP emission. It was also found that the preceding deprotonation step played an important role in TPrA oxidation at neutral pH and would remarkably influence the emission intensity. As excess intermediate radicals were produced upon rapid TPrA oxidation, only 5 mM TPrA was needed to achieve the maximum LOP ECL intensity in detecting trace Ru(bpy)32+ (<1 μM) and the LOP ECL response to Ru(bpy)32+ concentration was linear. Compared with the conventional Ru(bpy)32+/TPrA ECL, the LOP ECL technique not only produces higher emission intensity at lower oxidation-potential, but also significantly reduces the amount of the coreactant.  相似文献   

2.
Electrochemiluminescence(ECL) is a powerful transduction technique used in biosensing and in vitro diagnosis, while the mechanism of ECL generation is complicated and affected by various factors. Herein the effect of ionic strength on ECL generation by the classical tris(2,2'-bipyridyl)ruthenium(II)[Ru(bpy)32+]/tri-n-propylamine(TPrA) system was investigated. It is clear that the ECL intensity decreases significantly with the increase of ionic strength, most likely arising from the reduced deprotonation rate of TPrA+·. We further combined microtube electrode(MTE) with ECL microscopy to unravel the evolution of ECL layer with the variation of ionic strength. At a low concentration of Ru(bpy)32+, the thickness of ECL layer(TEL) nearly kept unchanged with the ionic strength, indicating the surface-confined ECL generation is dominated by the oxidative-reduction route. While at a high concentration of Ru(bpy)32+, ECL generation is dominated by the catalytic route and TEL increases remarkably with the increase of ionic strength, because of the extended diffusion length of Ru(bpy)33+ at a reduced concentration of TPrA·.  相似文献   

3.
A light-driven system consisting of tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) as the photosensitizer, semicarbazide as the electron donor and molecular oxygen as the electron acceptor has been employed for hydrogen peroxide production. The efficiency of this photosystem markedly depends on pH: while the peroxide yield is almost negligible at acid, neutral or slightly alkaline pH, it reaches significant values at high hydroxide concentrations, the initial rate of H2O2 formation drastically increasing from pH 12 to pH 14. In 1 M NaOH solutions containing Ru(bpy)32+ and semicarbazide at optimum concentrations, the number of catalytic cycles (or turnover number) undergone by the ruthenium complex over the complete course of the photochemical reaction is as high as 1.1 × 104.

Spectrofluorometric and laser flash photolysis techniques were used to study the primary photochemical reactions involving the excited state of the ruthenium complex as well as the photochemically generated species Ru(bpy)33+ and Ru(bpy)3+. It is proposed that at pH 14 a sequence of reactions leading to O2 photoreduction by electrons from semicarbazide takes place, with the concomitant formation of H2O2; the excited state of Ru(bpy)32+ appears to react via oxidative quenching by oxygen rather than via reductive quenching by semicarbazide. At neutral pH, in contrast, there is no H2O2 formation owing to the fact that semicarbazide is unable to reduce (Ru(bpy)33+ to Ru(bpy)32+, although the photoexcited ruthenium complex is quenched equally by oxygen.  相似文献   


4.
An electrochemiluminescence (ECL) sensor with good long-term stability and fast response time has been developed. The sensor was based on the immobilization of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) into the Eastman-AQ55D–silica composite thin films on a glassy carbon electrode. The ECL and electrochemistry of Ru(bpy)32+ immobilized in the composite thin films have been investigated, and the modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and chlorpromazine (CPZ) in a flow injection analysis system and showed high sensitivity. Because of the strong electrostatic interaction and low hydrophobicity of Eastman-AQ55D, the sensor showed no loss of response over 2 months of dry storage. In use, the electrode showed only a 5% decrease in response over 100 potential cycles. The detection limit was 1 μmol l−1 for oxalate and 0.1 μmol l−1 for both TPA and CPZ (S/N=3), respectively. The linear range extended from 50 μmol l−1 to 5 mmol l−1 for oxalate, from 20 μmol l−1 to 1 mmol l−1 for TPA, and from 1 μmol l−1 to 200 μmol l−1 for CPZ.  相似文献   

5.
The unique cathodic electrochemiluminescence(ECL) emission of Ru(bpy)32+(bpy=2,2′-bipyridine) was observed via Nafion film at Au electrode[Au/Nafion/Ru(bpy)32+] at about 0.20 V(vs. Ag/AgCl) and applied to the determination of several amino acids without prior derivatization with high sensitivity. The cathodic electrochemilumi-nescence(ECL) exhibits the detection limits and linear ranges of several amino acids comparable to or better than those of capillary electrophoresis with conventional ECL detection method(at 1.10—1.20 V vs. Ag/AgCl) based on precolumn derivatization. The results suggest that the cathodic ECL is promising for the detection of amino acids in bioanalysis.  相似文献   

6.
Ru(II)-complex functionalized silica nanoparticles(nano-SiO2) were prepared via a coordination reaction of cis-dichlorobis(2,2'-bipyridine)ruthenium[Ru(bpy)2Cl2] complex with poly(4-vinylpyridine)(P4VP)-modified nano-SiO2 particles. Both the Ru-complex and the functionalized nano-SiO2P4VP-Ru(bpy) hybrids were doped in poly(methyl methacrylate)(PMMA) to form optically transparent thin films. The composition and spectroscopic properties of the nano-SiO2P4VP-Ru(bpy) hybrids were evaluated with the help of thermogravimetric and elemental analysis, and UV-Vis absorption spectroscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. Microscopy images revealed that the nanohybrids were approximately 12 nm in diameter and readily formed aggregates following the functionalization with P4VP and Ru(bpy)2Cl2. The as-prepared nano-SiO2P4VP-Ru(bpy) hybrids produced emissions at approximately 604 and 654 nm under radiation both in solution and in doped thin films. Finally, cyclic voltammetry studies on the nanohybrid-modified electrode revealed a redox couple with the cathodic and anodic potentials at approximately 0.28 and 0.73 V(vs. Ag/AgCl), attributed to the one electron transfer of Ru(bpy)22+/3+ immobilized on the nano-SiO2 particles.  相似文献   

7.
The photophysics of three complexes of the form Ru(bpy)3−(pypm)2+ (where bpy2,2′-bipyridine, pypm 2-(2′-pyridyl)pyrimidine and P=1, 2 or 3) was examined in H2O, propylene carbonate, CH3CN and 4:1 (v/v) C2H5OH---CH3OH; comparison was made with the well-known photophysical behavior of Ru(bpy)32+. The lifetimes of the luminescent metal-to-ligand charge transfer (MLCT) excited states were determined as a function of temperature (between −103 and 90 °C, depending on the solvent), from which were extracted the rate constants for radiative and non-radiative decay and ΔE, the energy gap between the MLCT and metal-centered (MC) excited states. The results indicate that *Ru(bpy)2(pypm)2+ decays via a higher lying MLCT state, whereas *Ru(pypm)32+ and *Ru(pypm)2(bpy)2+ decay predominantly via the MC state.  相似文献   

8.
Singlet and triplet energy transfer processes in [Ru(bipy)2(4-methyl-4′-(2-arylethyl)-2,2′-bipyridine)]2+ have been investigated, where ARYL = 2-naphthyl (Ru-Naph), 9-anthryl (Ru-Anth) and 1-pyrenyl (Ru-Pyrene). In each case fluorescence from the aromatic chromophore is quenched by intramolecular energy transfer to Ru(bipy)32+ whereas emission from the Ru(bipy)32+ moiety is controlled by the relative energy of its 3MLCT state and the pendant arene triplet states. Consequently 3MLCT emission is observed for Ru-Naph whereas it is fully quenched for Ru-Anth. When the two states are isoenergetic (e.g. Ru-Pyrene) a long-lived 3MLCT emission is observed which delays with the same lifetime as the pyrene triplet state (5.23 μs).  相似文献   

9.
Ru(bpz)32+ (bpz = 2,2′-bipyrazine) has six peripheral uncoordinated nitrogen atoms potentially available for protonation in presence of acids. The emission from *Ru(bpz)32+ is efficiently quenched by organic acids and the observed quenching rate constants are explained in terms of proton transfer from acids to *Ru(bpz)32+. The absorption and emission intensity of Ru(bpz)32+ increases with increasing concentration of carboxylate ion suggesting the complex formation between the two reactants in the ground state. From these studies, the formation constant (Kf) have been evaluated by Benesi–Hildebrand method. The Kf values indicate that generally the ion pair association constants estimated from absorption and emission techniques are comparable and these values are sensitive to the structure of the carboxylate ions.  相似文献   

10.
The rapid and reliable measurement of hydrogen peroxide (H2O2) is imperative for many areas of technology, including pharmaceutical, clinical, food industry and environmental applications. In this work, a novel multifunctional complex, [Ru(bpy)2(luminol-bpy)](PF6)2 (bpy: 2,20'-bipyridine), was designed and synthesized by incorporating a Ru(II) complex with a luminal group. In the presence of horseradish peroxidase (HRP), reaction of [Ru(bpy)2(luminol-bpy)]2+ with H2O2 can be monitored by three sensing channels including photoluminescence (PL), chemiluminiscence (CL) and eletrochemiluminiscence (ECL). The quantitative assays for H2O2 in aqueous solutions using [Ru(bpy)2(Luminalbpy)]( PF6)2 as a probe were established with PL, ECL and CL signal output modes, respectively.  相似文献   

11.
The rate constant for the reaction between the sulphate radical (SO4√−) and the ruthenium (II) tris-bipyridyl dication (Ru(bipy)32+) is (3.3±0.2)×109 mol−1 dm3 s−1 in 1 mol dm−3 H2SO4 and (4.9±0.5)×109 mol−1 dm3 s−1 in 0.1 mol dm−3, pH 4.7 acetate buffer. The SO4√−radical produced by the electron transfer quenching of Ru(bipy)32+* by S2O82− reacts rapidly with both acetate buffer and chloride ions. These side reactions result in a reduction in the overall quantum yield of Ru(bipy)33+ production and reduced reaction selectivity when Ru(bipy)32+* is quenched by persulphate.  相似文献   

12.
Wu X  Huang F  Duan J  Chen G 《Talanta》2005,65(5):1279-1285
Melatonin and some of its important derivatives were found to be able to enhance the ECL of Ru(bpy)32+ in an alkaline Britton–Robinson buffer solution. The optimum conditions for the enhanced ECL, such as the selection of applied potential mode, type of buffer solution, pH effect and effect of Ru(bpy)32+ concentration have been investigated in detail in this paper. Under the optimum conditions, the enhanced ECL is linear with the concentration of melatonin and its derivatives over the wide range, and the detection limit for these compounds was found to be in the range of 5.0 × 10−8 to 1.0 × 10−10 mol L−1. The proposed procedure was applied for the determination of drug in tablets with recoveries of 85–93%. A possible mechanism for the enhanced ECL of Ru(bpy)32+ by melatonin and its derivatives was proposed, and the relationship between molecular structure of melatonin and its derivatives and the enhanced ECL behavior was also discussed.  相似文献   

13.
The rate constants of electronic energy transfer from the lowest excited state of Ru(bpy)2(L)2+ or Ru(bpy)(L)22+ 10 Ru(L)32+ (b  相似文献   

14.
Two mononuclear RuII complexes of polypyridyl ligands, cis-[Ru(bpy)2(4,4′-bpy)Cl](PF6)·H2O (1) and cis-[Ru(phen)2(CH3CN)2](PF6)2 (2) (bpy=2,2′-bipyridyl, 4,4′-bpy=4,4′-bipyridyl, and PHEN=1,10-phenanthroline), have been synthesized and characterized by elemental analyses, IR and UV–vis spectra. The crystal structures of both complexes have been determined by X-ray diffraction, indicating that each RuII center is hexa-coordinated (RuN5Cl for 1 and RuN6 for 2) and takes a distorted octahedral geometry. The favored feature of both complexes is that they are quite useful complex precursors for further constructing new functional architectures.  相似文献   

15.
Electrocatalytic water oxidation to evolve O2 was studied on a Nafion–RuO2–Ru(bpy)32+ composite electrode. The O2 evolution current efficiency was largely improved for the multi-component electrode over the Nafion–RuO2 and Nafion–Ru(bpy)32+ individuals. The redox mediation through the Ru(bpy)32+ was found to dominate over the RuO2 catalytic effect in the water oxidation mechanism. The specific surface area of the RuO2, which was prepared at different temperatures (300–700°C), used in fabricating the composite electrode also played an important role in the overall water oxidation mechanism. Both the reaction and electrode parameters were optimized to get effective electrocatalytic current values in this study.  相似文献   

16.
The observed difference in transition strength for (SF6)2, (SiF4)2 and (SiH4)2 IR-predissociation spectra is explained by induction effects (μ012/R126) which have to be included in the interaction Hamiltonian in addition to the dominant dipole-dipole term (μ012/R123).  相似文献   

17.
p-hydroxyphenylpyruvic acid (pHPP) is an important intermediate in the metabolism of tyrosine. Under normal circumstances pHPF is readily converted to 2,5-dihydroxyphenylacetic acid by p-hydroxy-phenylpyruvate oxidase and the levels of pHPP encountered in blood and urine are extremely low. However, in a few individuals suffering from a congenital metabolic defect known as tyrosinemia, the oxidase is not available which leads to dramatic elevation of pHPP levels in blood and urine[1]. Therefore, a selective and sensitive method for measuring pHPT is very useful for the diagnosis and treatment of such disease. In this paper the electrochemiluminescence(ECL) based on the reaction of pHPP with tris(2,2'-bipyridine)ruthenium(Ⅱ)[Ru(bpy)32+] in a flow injection system has been studied and a sensitive ECL method has been developed to detect pHPP in aqueous solution.  相似文献   

18.
用从头计算法在HF/6-31G*基组水平上研究了NH4++NH3→NH3+NH4+,NH4++NH2CH3→NH3+NH3CH3+,NH4++NH(CH3)2→NH3+NH2(CH3)2+以及NH3CH3++NH2CH3→NH2CH3+NH3CH3+等4个体系的质子传递反应的机理.结果表明:(1)上述质子传递反应均具有双阱型的势能面,质子沿N(1)、N(2)连线直接传递;(2)质子受体分子中的甲基对质子传递起促进作用,而质子给体离子中的甲基则阻碍质子的传递。  相似文献   

19.
V. Kumar  G. Aravamudan 《Polyhedron》1990,9(24):2879-2885
Reaction of 1,3-thiazolidine-2-thione with tellurium(IV) in hydrobromic acid medium gave the hexabromotellurate, [C6H9N2S3]22+[TeIVBr6]2− (3). Reaction of 1-methylimidazoline-2-(3H)-thione (L″) with tellurium(IV), in hydrobromic acid medium, gave the mixed-ligand tellurium(II) complex [TeIIL″3Br]+Br (4). The structures of [C6H9N2S3]22+[TeIVBr6]2− (3) and [TeIIL″3Br]+Br were determined by single crystal X-ray diffraction methods. In 3 the unit cell contains [TeBr6]2− anions and two [C6H9N2S3]+ cations. There is no direct bonding between the metal atom and the cations. In the anion only slight angular deviations from the perfect octahedral geometry are observed. The lone pair of electrons on tellurium(IV) is found to be stereochemically inert. In the cation the two five-membered heterocyclic rings adopt different conformations. In complex 4, in the solid state, the planar [TeIIL″3Br]+ cation and Br anion are held together by ionic interactions. In the cation, L″ is bonded to the central tellurium atom through the sulphur atom.  相似文献   

20.
布比卡因是一种外科局部麻醉剂,使用过量会导致中枢神经系统和心脏血管系统中毒[1],可引起心脏停博.高效液相色谱和毛细管电泳(CE)[2]是该药常用的检测方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号