首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
铬和硫共掺杂二氧化钛催化剂的制备及其可见光催化性能   总被引:3,自引:0,他引:3  
吕媛  倪伶俐  杨平  曹勇 《催化学报》2007,28(11):987-992
以钛酸四丁酯为前驱体,硝酸铬和硫脲为掺杂离子给体,通过溶胶-凝胶法成功制备了纯TiO2、不同浓度的铬掺杂和铬/硫共掺杂TiO2光催化剂.以靛红为目标污染物,进行了可见光催化降解活性测试实验.结果表明,共掺杂催化剂的活性高于未掺杂和单掺杂催化剂.当共掺杂催化剂含0.60%(原子比)的铬,1.2%(原子比)的硫,焙烧温度为500℃时具有最高的光催化降解活性.X射线衍射、N2吸附、X射线光电子能谱和紫外-可见漫反射吸收光谱表征结果显示,共掺杂催化剂为锐钛矿型,具有较高的比表面积,对可见光有较强的吸收能力.共掺杂TiO2具备较高可见光催化活性的原因可能是铬掺杂降低了TiO2的禁带宽度,拓展了可见光吸收区域,而硫掺杂能够维持体系的电荷平衡,增强催化剂对可见光的吸收.  相似文献   

2.
分别以氨水、乙二胺、丁胺为氮源,利用阳极氧化法和湿化学法合成氮掺杂的二氧化钛(TiO2)纳米管阵列.通过扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等表征方法对氮掺杂TiO2纳米管形貌,晶型和氮元素掺杂方式进行分析,并通过可见光光催化降解六氯苯(HCB)废水,研究氮元素掺杂方式与可见光光催化活性的关系.结果表明有序排列的TiO2纳米管阵列垂直生长在钛基底表面,管长500nm左右,管径100nm左右.氮元素掺杂阻碍了TiO2晶粒的增长,抑制了锐钛矿向金红石相的转变.无机氮比有机氮更加利于氮元素进入TiO2晶格,取代态氮比间隙态氮表现出更高的可见光光催化活性.  相似文献   

3.
N掺杂TiO_2纳米粒子表面光生电荷特性与光催化活性   总被引:2,自引:0,他引:2  
以尿素为氮源,采用水热法制备了不同N掺杂量的TiO2(N-TiO2)光催化剂.利用X射线衍射(XRD),紫外-可见漫反射光谱(UV-Vis DRS),X射线光电子能谱(XPS)及荧光(PL)光谱等技术对其进行了系统的表征.以罗丹明B(RhB)和甲基橙(MO)溶液的脱色降解为模型反应,分别考察了N-TiO2光催化剂在紫外和可见光区的光催化活性.利用表面光伏(SPV)和瞬态光伏(TPV)技术研究了N-TiO2纳米粒子表面光生电荷的产生和传输机制,并探讨了光生电荷与光催化活性之间的关系.结果显示,随着N含量的增大,TiO2表面光伏响应阈值红移,可见光部分光电压响应强度逐渐增强,瞬态光伏响应达到最大值的时间亦有着不同程度的延迟.这表明适量的N掺杂能够提高TiO2纳米粒子中光生载流子的分离效率,相应地延长载流子的传输时间,增加光生电荷的寿命,从而促进其光催化活性;而过量的N掺杂则增加了TiO2纳米粒子中光生载流子的复合中心,抑制其光催化活性.  相似文献   

4.
利用微波辅助溶剂热法合成了In-Si共改性的TiO2光催化剂.粉末X射线衍射(XRD)、激光拉曼(Raman)光谱、N2吸脱附(BET)、X射线光电子能谱(XPS)、光致发光(PL)光谱和紫外-可见漫反射光谱(UV-Vis DRS)等实验表明,尽管掺杂和改性后TiO2结晶度略有降低,但不影响光催化剂锐钛相的形成.Si掺杂入TiO2晶格使颗粒变小,比表面积变大.In不能进入TiO2晶格,在TiO2表面形成了In2O3.罗丹明B(RhB)降解实验显示,In-Si共改性TiO2表现出很高的紫外和可见光催化活性,Si:In:Ti的摩尔比为0.03:0.02:1的样品(IST-2)光催化活性最高,紫外光下3 min即可将RhB降解完全,可见光下120 min RhB降解率为97%,这是由材料的高表面积,In2O3-TiO2复合半导体之间高效电荷转移及染料敏化等共同作用所致.对于苯酚,光催化降解则相对缓慢,700 min内尚不能降解完全.  相似文献   

5.
采用水热法制备了富含(001)晶面的锐钛矿型TiO2纳米片,并通过改变热处理过程中NH3流速制备不同N掺杂浓度的TiO2纳米片.运用X射线衍射、场发射扫描电镜、高分辨率透射电子显微镜、紫外-可见漫反射光谱、X射线光电子能谱和荧光光谱对光催化剂进行了结构和性能表征,并以罗丹明B为目标降解物,考察了N掺杂浓度对TiO2纳米片可见光催化活性的影响.结果表明,NH3流速为40ml/min时制备的N掺杂TiO2纳米片具有最低的光生电子-空穴复合速率,最高的OH产生能力并表现出最高的光催化活性.同时,讨论了N掺杂浓度对TiO纳米片可见光催化活性影响的机理.  相似文献   

6.
水热法合成可见光响应的B掺杂TiO2及其光催化活性   总被引:3,自引:0,他引:3  
以硼酸和钛酸丁酯为原料,采用水热法一步合成了B掺杂的纳米TiO2. 采用X射线衍射、紫外-可见光谱、透射电镜以及X射线光电子能谱对所得样品进行了表征. 结果表明,该方法制备的B-TiO2具有明显的可见光吸收,并且少量B的掺杂不会对TiO2的晶型和粒径造成很大影响. 掺杂的B以 B - O - Ti 的形式存在,有利于可见光活性的提高. 苯酚的光催化降解反应实验表明,水热法合成的B-TiO2在可见光下具有较好的光催化活性,反应 5 h 后苯酚降解率可达100%.  相似文献   

7.
铁掺杂TiO2纳米管阵列对不锈钢的光生阴极保护   总被引:4,自引:0,他引:4  
李静  云虹  林昌健 《物理化学学报》2007,23(12):1886-1892
在含FeSO4的HF、H2SO4/HF、NaF/Na2SO4溶液中,通过电化学阳极氧化直接在纯钛表面制备Fe 掺杂的TiO2(Fe-TiO2)纳米管阵列. 应用X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见吸收光谱(UV-Vis)、X 射线光电子能谱(XPS)等手段对纳米管阵列的结构、形貌及化学组成进行表征. 利用光电化学测量研究Fe-TiO2纳米管阵列在不同波长范围内的光电响应特性和光生阴极保护行为. 考察了温度、时间、掺杂含量等参数对TiO2纳米管阵列的几何尺寸、形貌和光电性能的影响. 结果表明, Fe掺杂可有效减缓TiO2纳米管阵列载流子的复合, 窄化TiO2带隙宽度, Fe-TiO2在410-650 nm范围显示强吸收, 并使光谱响应扩展到波长大于400 nm 的可见光区. 实验结果还表明, Fe-TiO2纳米管阵列对316不锈钢(316L)具有良好的光生阴极保护作用, 暗态下阴极保护作用可继续维持.  相似文献   

8.
掺氮二氧化钛可见光照射降解微囊藻毒素-LR   总被引:2,自引:0,他引:2  
采用溶胶凝胶法制备了N掺杂TiO2(N-TiO2)纳米粉体光催化剂,利用X射线光电子能谱(XPS)、X射线衍射(XRD)、紫外可见反射光谱及透射电镜(TEM)分析测定,对光催化剂N/TiO2进行了结构表征.发现N掺杂TiO2相对纯TiO2禁带宽度变窄,可见光区有明显吸收.在可见光照射下,利用纳米N/TiO2作为光催化剂降解微囊藻毒素(Microcystin-LR,MC-LR),通过高效液相色谱仪(HPLC)跟踪检测降解过程MC-LR浓度变化,液质联用仪(LC-MS)检测MC-LR降解中间产物变化.利用电子自旋共振法(ESR)及过氧化物酶催化氧化方法跟踪定性定量测定光催化过程中氧化物种的种类变化.采用总有机碳(TOC)测定仪测定了MC-LR光催化深度氧化矿化效果.结果表明,可见光(λ420nm)照射可有效激发光催化剂N-TiO2活化分子氧降解MC-LR,在反应条件下,光催化反应14h,MC-LR降解率达到100%,20h矿化率达到59%.其光催化反应体系中氧化物种主要为羟基自由基(·OH).质谱检测到13种降解产物,主要反应机理为光催化反应产生·OH进攻MC-LR结构四个易氧化部位,以及一些氨基酸之间的肽键的水解.  相似文献   

9.
Fe3+改性纳米ZnO光催化降解壬基酚聚氧乙烯醚   总被引:2,自引:0,他引:2  
采用氨浸法制备了不同Fe3 含量的Fe3 /ZnO光催化剂,并用X射线衍射、N2吸附、X射线光电子能谱和紫外-可见漫反射光谱对纳米Fe3 /ZnO进行了表征.以壬基酚聚氧乙烯醚(NPE-10)为模型污染物,分别在紫外光和可见光下考察了纳米Fe3 /ZnO的光催化活性.结果表明,该方法能成功地将Fe掺杂到ZnO晶体上,且随着Fe3 添加量的增加,ZnO的晶粒尺寸逐渐减小,比表面积逐渐增大.与纳米ZnO样品相比,Fe3 /ZnO中Fe2p结合能减小,而Zn2p和O1s结合能增大,ZnO表面的羟基氧和吸附氧含量增加,光催化活性提高.当Fe3 的添加量大于0.5%时,Fe3 /ZnO样品的吸收光谱发生红移,在可见光区出现吸收.光催化降解结果显示,0.5?3 /ZnO样品的光催化活性最高,在紫外光和可见光照射3h后对NPE-10的降解率分别比纯ZnO提高18%和69%.  相似文献   

10.
采用溶胶-凝胶法制备了不同铕(Eu)掺杂量的TiO2纳米颗粒(Eu-TiO2),利用透射电镜(TEM),X射线光电子能谱(XPS),X射线衍射(XRD)及紫外可见漫反射(UV-Vis DRS)等方法对Eu-TiO2进行了物理特性的初步表征.结果表明:与未掺杂纳米TiO2比较,Eu-TiO2禁带宽度变窄,具有可见光光催化活性.在可见光下(λ≥420 nm)照射下,以光催化降解染料罗丹明B(Rhodamine B,RhB)为目标反应,探讨了Eu-TiO2不同制备条件对RhB降解光催化活性的影响,优化得到制备高活性Eu-TiO2最佳pH为3、掺杂比例(nEu/nTi)为0.05%、煅烧温度为500 ℃.研究了可见光照射下Eu-TiO2降解RhB和无色有机小分子水杨酸(SA)光催化反应条件及降解特性,RhB的12 h深度氧化矿化率为60.2%,SA的8 h降解率达到100%.通过跟踪测定可见光下Eu-TiO2光催化反应过程中氧化物种的变化,研究了可见光激发Eu-TiO2光催化反应机理,表明其光催化反应主要涉及羟基自由基(·OH)历程.  相似文献   

11.
N-TiO_2/ZnO复合纳米管阵列的掺杂机理及其光催化活性   总被引:2,自引:0,他引:2  
以ZnO纳米柱阵列为模板,采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列.扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明:两种阵列的纳米管均为六角形结构,直径约为100nm,壁厚约为20nm;在N-TiO2/ZnO复合纳米管阵列中,掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面,仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置;表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化,增强了纳米管阵列的光吸收效率,促进了光生载流子的分离.光催化实验结果表明,N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

12.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

13.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

14.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

15.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

16.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

17.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

18.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

19.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

20.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号