首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2017,29(7):1762-1771
In this work we present the development of a simple handmade approach for the easy fabrication of three‐electrode electrochemical devices based on newly in‐house developed carbon ink composed of graphite powder and polystyrene. Different proportions of graphite/polystyrene were investigated for the optimization of the ink. The counter and reference electrodes were produced using commercial carbon ink and silver glue. Scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to investigate the morphology and the electrochemical properties of the sensor. The results showed that the electroactive area of the optimized working electrode was ca . 2.35 times larger than its geometric area. The RSD values obtained for repeatability and reproducibility were 0.20% and 2.78%, respectively, which suggest no significant variation on the electrodes fabricated. The analytical feasibility of the electrode was tested through its application for the determination of nitrite in drinking water. The quantifications were successfully performed at levels below the maximum contaminant level established for nitrite. A limit of detection of 1.42 × 10−6 mol L−1 and recoveries of ca . 103 % were achieved. The results were validated using ion‐chromatography technique with good agreement. The performance of the unmodified sensor proposed here on nitrite determination was better than some recently reported modified electrodes obtained through complex procedures.  相似文献   

2.
The development and fabrication of a simple, portable, and sensitive detection tool to precisely monitor nitrite level is of growing importance in electrochemistry research, given the strong interest in the protection of drinking water quality, treatment of wastewater, food production, and control of remediation processes. This work describes the fabrication of a simple, cost-effective, pen-type electrochemical sensor based on bimetallic gold and tungsten nanoparticles electrochemically decorated on graphene-chitosan modified pencil graphite electrode (PGE) for the trace detection of nitrite in real samples. The prepared nanocomposite was characterized using XRD, SEM, and EDS. The electrochemical behavior of the sensor was evaluated by cyclic voltammetry (CV) and impedance electrochemical spectroscopy (EIS). Results revealed that the proposed sensor displayed excellent electrocatalytic activity towards electro-oxidation of nitrite with an irreversible redox reaction. The AuNPs-WNPs@Gr-Chi/PGE sensor exhibited excellent analytical performance with a wide linear range from 10 to 250 μM towards nitrite. The LOD and LOQ were calculated to be 0.12 μM and 0.44 μM, respectively. The designed electrochemical sensor was successfully applied for the detection of nitrite in water, milk, and natural fruit juice samples.  相似文献   

3.
A simple sensor based on an oligosaccharide-modified three-dimensional graphene (OCS-3D-G) free-standing electrode was developed for the electrochemical determination of the insecticide imidacloprid (IDP). OCS can interact with graphene oxide sheets by π–π and electrostatic interactions, leading to graphene oxide sheets arranged as regular and dense porous structures. T herefore, compared with other modifier carbohydrates, OCS-3D-G is more suitable for electrochemical sensing. OCS-3D-G was synthesized by a hydrothermal method and then fabricated as an electrochemical sensor, and its characterization was done and electrochemical behavior studied in detail. T he optimized sensor showed good reproducibility, selectivity, and stability, and responded linearly over a wide concentration range (1.0–50.0 μM) w ith a limit of detection (LOD) of 0.51 μM. F inally, the proposed sensor was used for the determination of IDP in brown rice, and the results were in line with those obtained from high-performance liquid chromatography (HPLC). It is thereby shown that the developed free-standing electrode is simple and cheap and can be used as a disposable electrode.  相似文献   

4.
Even though they were introduced less than a decade ago, electrochemical paper‐based devices (ePADs) have attracted widespread attention because of their inherent advantages in many applications. ePADs combine the advantages of microfluidic paper‐based devices (low cost, ease of use, equipment free pumping, etc.) for sample handling and processing with the advantages of sensitive and selective detection provided by electrochemistry. As a result, ePADs provide simplicity, portability, reproducibility, low cost and high selectivity and sensitivity for analytical measurements in a variety of applications ranging from clinical diagnostics to environmental sensing. Herein, recent advances in ePAD development and application are reviewed, focusing on electrode fabrication techniques and examples of applications specially focused on environmental monitoring, biological applications and clinical assays. Finally, a summary and prospective directions for ePAD research are also provided.  相似文献   

5.
以苯胺为功能单体和交联剂,氯霉素(chloramphenicol,CAP)为模板分子,采用电化学聚合法(循环伏安法)在金电极上合成了对CAP具有快速响应能力的聚苯胺分子印迹膜;结合差示脉冲伏安法建立了针对氯霉素的检测方法,并将所制备的聚苯胺分子印迹膜用作电化学传感器以测定氯霉素眼药水中的氯霉素.结果表明,所制备的聚苯胺分子印迹膜具有制备简单、响应快速、灵敏度高、再生性能良好等特点;其对氯霉素眼药水中的氯霉素的检测结果令人满意,有望用于实际样品中氯霉素的检测.  相似文献   

6.
The electrochemical detection of BPA often requires modification of electrodes to overcome BPA′s slower kinetics and higher oxidation potential. This work reports a modification-free, paper electrode based on vacuum-filtered SWCNT thin film. The prepared electrode does not need to be polished or transferred into the conducting substrates. The linear sweep voltammetric detection showed a linear response from 0.5–10 μM and 25–100 μM with the experimental LOD of 1.0 μM (S/N=3). The interference study and good recovery percentage (93–105 %) in real water samples demonstrated the method‘s selectivity. The sensor can be promising for developing a simple, low-cost, portable, and paper-based BPA monitoring system.  相似文献   

7.
砷是一种有毒的化学元素,尤其对环境和人体健康有害. 因此,简单、快速和准确的砷离子(As3+)检测方法的开发引起了广泛的关注. 本项工作研究了基于离子印迹聚合物(MIP)和纳米多孔金(NPG)改性氧化铟锡(ITO)电极(MIP/NPG/ITO)用于检测不同水质中砷离子(As3+)测定的电化学传感器. 通过步骤简单、易操控、绿色环保的电沉积方法在ITO表面原位制备具有高导电,大比表面积,高生物相容性的NPG. 然后通过电聚合在NPG表面上原位合成一层MIP,其中As3+用作模板分子,邻苯二胺用作功能单体. 通过扫描电镜(SEM)和能谱仪(EDS)对MIP/NPG/ITO的制备过程进行了跟踪. 采用铁氰化钾与亚铁氰化钾螯合物作为电化学探针产生信号,采用循环伏安法(CV)和电化学阻抗谱(EIS)研究了MIP/NPG/ITO的电化学行为. 通过优化实验条件,采用循环伏安法对As3+进行了定量检测,其测量As3+的线性范围为2.0×10-11至9.0×10-9 mol·L-1,检测下限为7.1×10-12 mol·L-1S/N = 3). 所构建传感器的检出限远低于10 ppb,符合世界卫生组织(WHO)和环境保护局(EPA)设定的饮用水标准. 另外,该传感器具有制备和确定步骤简单,重复性好,重现性和稳定性优异的优点. 值得一提的是,所制备的传感器已成功应用于测量景观河水、地下水、自来水和生活污水等四种水质中As3+. 可以预见,这种简单而廉价的传感器在环境监测,食品分析和临床诊断领域具有潜在的实际应用价值.  相似文献   

8.
The development of low-cost electrode devices from conductive materials has recently attracted considerable attention as a sustainable means to replace the existing commercially available electrodes. In this study, two different electrode surfaces (surfaces 1 and 2, denoted as S1 and S2) were fabricated from chocolate wrapping aluminum foils. Energy dispersive X-Ray (EDX) and field emission scanning electron microscopy (FESEM) were used to investigate the elemental composition and surface morphology of the prepared electrodes. Meanwhile, cyclic voltammetry (CV), chronoamperometry, electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were used to assess the electrical conductivities and the electrochemical activities of the prepared electrodes. It was found that the fabricated electrode strips, particularly the S1 electrode, showed good electrochemical responses and conductivity properties in phosphate buffer (PB) solutions. Interestingly, both of the electrodes can respond to the ruthenium hexamine (Ruhex) redox species. The fundamental results presented from this study indicate that this electrode material can be an inexpensive alternative for the electrode substrate. Overall, our findings indicate that electrodes made from chocolate wrapping materials have promise as electrochemical sensors and can be utilized in various applications.  相似文献   

9.
This study used a facile method to develop a novel silver/Graphene–polypyrrole (Ag/G–PPy)-modified electrode that can be used as an electrochemical sensor for levosimendan detection. The properties of the synthesized Ag/G–PPy-modified electrode were examined through field-emission scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The Ag/G–PPy-modified electrode exhibited satisfactory current signals toward levosimendan concentrations ranging from 0.21 to 6.88 μM and exhibited a low detection limit (0.12 μM). Accordingly, the proposed electrode can serve as a simple and inexpensive electrochemical sensor for levosimendan detection.  相似文献   

10.
采用一锅法制备了钨酸镍与氧化锌复合材料(NiWO_(4)-ZnO),并对其进行了形貌表征、元素分析及比表面积测试,构筑了一种吲哚美辛电化学传感器。研究发现,NiWO_(4)-ZnO复合材料修饰玻碳电极对吲哚美辛表现出较高的检测灵敏度,在最优的实验条件下,吲哚美辛浓度与氧化峰电流成正比,在250~1082 pmol/L范围内呈现良好的线性关系,线性相关系数为0.9970,检出限为66.6 pmol/L。吲哚美辛电化学传感器应用于实际样品中吲哚美辛的测定,回收率为95.1%~98.3%,相对标准偏差为2.3%~3.8%,该传感器可用于药物分析领域。  相似文献   

11.
《Electroanalysis》2017,29(11):2628-2637
This paper demonstrates, for the first time, the use of paper‐based electrochemical devices coupled to external solid working electrodes. The paper‐based electrochemical cells were fabricated using inexpensive and largely available office paper, according to a simple protocol that consists on the creation of hydrophobic barriers using paraffinized paper and preheated metal stamp. The counter and reference electrodes were integrated to the paper platform through the deposition of carbon and silver inks, respectively. The electrochemical paper analytical device (ePAD) was coupled to external glassy carbon rod electrode modified with reduced graphene oxide doped with Cu nanoparticles through meniscus configuration. The analytical usefulness of this electrochemical approach was demonstrated through the simultaneous determination of paracetamol and caffeine in biological samples. The analytes were successfully quantified in real urine samples and limits of detection of 24.6 nM (paracetamol) and 36.1 nM (caffeine) were obtained. The paper platform showed good stability (RSD of 1.07 % for the peak currents and 1.43 % for the peak potentials) and satisfactory performance. The use of solid electrodes coupled to paper electrochemical devices, firstly demonstrated here, opens new possibilities for the utilization of ePADs in electrochemistry and electroanalytical chemistry and offers advantages such as the extremely reduced consumption of reagents and the minimal generation of wastes.  相似文献   

12.
In this work, an economically viable, very low cost, indigenous, ubiquitously available electrochemical sensor based on bimetallic nickel and tungsten nanoparticles modified pencil graphite electrode (NiNP-WNP@PGE) was fabricated for the sensitive and selective detection of bisphenol A (BPA). The NiNP-WNP@PGE sensor was prepared by a facile electrochemical one step co-deposition method. The prepared nanocomposite was morphologically characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), electrochemically by cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The proposed sensor displayed high electrocatalytic activity towards electro-oxidation of BPA with one irreversible peak. The fabricated sensor displayed a wide detection window between 0.025 μM and 250 μM with a limit of detection of 0.012 μM. PGE sensor was successfully engaged for the detection of BPA in bottled water, biological, and baby glass samples.  相似文献   

13.
The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using a novel type of porous carbon composite membrane/glassy carbon electrode based on the low-cost common filter paper by a simple method. The resulting device exhibited excellent electrocatalytic activities toward the oxygen reduction reaction. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements demonstrated that the porous morphology and uniformly dispersed Fe3C nanoparticles of the PCCM play an important role in the oxygen reduction reaction. A linear response range from 2μmol/L up to 110 μmol/L and a detection limit of 1.4 μmol/L was obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation, was 3.0%. The successful fabrication of PCCM/GC electrode may promote the development of new porous carbon oxygen reduction reaction material for the oxygen reduction sensor.  相似文献   

14.
Microbial electrochemical systems utilize the electrochemical interaction between microorganisms and electrode surfaces to convert chemical energy into electrical energy, offering a promise as technologies for wastewater treatment, bioremediation, and biofuel production. Recently, growing research attention has been devoted to the development of microbial electrochemical sensrs as biosensing platforms. Microbial electrochemical sensors are a type of microbial electrochemical technology (MET) capable of sensing through the anodic or the cathodic electroactive microorganisms and/or biofilms. Herein, we review and summarize the recent advances in the design of microbial electrochemical sensing approaches with a specific overview and discussion of anodic and cathodic microbial electrochemical sensor devices, highlighting both the advantages and disadvantages. Particular emphasis is given on the current trends and strategies in the design of low-cost, convenient, efficient, and high performing METs with different biosensing applications, including toxicity monitoring, pathogen detection, corrosion monitoring, as well as measurements of biological oxygen demand, chemical oxygen demand, and dissolved oxygen. The conclusion provides perspectives and an outlook to understand the shortcomings in the design, development status, and sensing applications of microbial electrochemical platforms. Namely, we discuss key challenges that limit the practical implementation of METs for sensing purposes and deliberate potential solutions, necessary developments, and improvements in the field.  相似文献   

15.
A cotton yarn biosensor based on electrochemical transistor functionalized with MWCNT and PANI was developed for the detection of urea. The transistors based on PANI/MWCNT/cotton yarns under optimized MWCNT concentration has been obtained, which exhibited high on/off current ratio, fast response time, and good operational stability. A transistor-based urea sensor was prepared from PANI/MWCNT/cotton yarns, which could monitor urea in the 1 nM–1 mM linear range with the correlation coefficient of 0.9716. Furthermore, the sensor showed superior reproducibility and high specificity. The practical applications of the proposed sensor were also confirmed. These results indicate the flexible transistor can be used as an efficient platform for biological detection in body fluids.  相似文献   

16.
A highly sensitive and convenient electrochemical sensor, based on surface molecularly imprinted polymers and multiwalled carbon nanotubes, was successfully developed to detect chlorpyrifos in real samples. In order to solve the problems like uneven shapes, poor size accessibility, and low imprinting capacity, the layer of the molecularly imprinted polymer was prepared on the surface of silica nanospheres. Moreover, the doping of multiwalled carbon nanotubes greatly improved the electrical properties of developed sensor. Under the optimal conductions, the electrochemical response of the sensor is linearly proportional to the concentration of chlorpyrifos in the range of 5.0 × 10?12‐5.0 × 10?8 mol/L with a low detection limit of 8.1 × 10?13 mol/L. The prepared sensor exhibited multiple advantages such as low cost, simple preparation, convenient use, excellent selectivity, and good reproducibility. Finally, the prepared sensor was successfully used to detect chlorpyrifos in vegetable and fruit.  相似文献   

17.
以水杨酸(SA)为模板分子,邻苯二胺(o-PPD)及吡咯(Py)为复合功能单体,在石墨烯修饰的玻碳电极表面制备分子印迹电化学传感器(MIP/GO/GCE),用扫描电镜(SEM)观察印迹膜的表面形貌,方波伏安法(SWV)和循环伏安法(CV)对分子印迹传感器的性能进行表征。通过优化实验条件,显示SA浓度在1.0×10-8~1.0×10-2 mol/L范围内,分子印迹传感器峰电流与SA浓度负对数具有良好的线性关系,检出限为8.6×10-9 mol/L。该传感器对SA具有良好的选择性,样品回收率为101%~106%,相对标准偏差(RSD)为3.8%。SA分子印迹传感器的制备简单、抗干扰性好、灵敏度高、成本低廉,具有较好实用价值。  相似文献   

18.
The present study describes a simple strategy to integrate electrochemical detection with an assembled microchip‐capillary electrophoresis platform. The electrochemical cell was integrated with a microfluidic device consisting of five plastic squares interconnected with fused silica capillaries, forming a four‐way injection cross between the separation channel and three side‐arms (each of 15 mm in length) acting as buffer/sample reservoirs. The performance of the system was evaluated using electrodes made with either carbon ink, carbon nanotubes, or gold and under different experimental conditions of pH, capillary length, and injection time. Using this system it was possible to separate the neurotransmitters dopamine and cathecol and to quantify phenol from a real sample using a linear calibration curve with a calculated LOD of 0.7 µM. A similar concept was applied to determine glucose, by including a pre‐reactor filled with beads modified with glucose oxidase (GOx). The latter system was used to determine glucose in a commercial sample, with a recovery of 95.2 %. Overall, the presented approach represents a simple, inexpensive, and versatile approach to integrate electrochemical detection with CE separations without requiring access to microfabrication facilities.  相似文献   

19.
氯霉素分子印迹聚合膜电极的制备及氯霉素检测   总被引:1,自引:1,他引:0  
以邻氨基酚(OAP)为功能单体,氯霉素(CAP)为模板分子,用电化学聚合的方法在Pt上合成了CAP分子印迹(MIP)OAP膜(CAP-MIP-OAP/Pt)电极,通过扫描电子显微镜和电化学技术对聚合膜的结构和性能进行了表征。 结果表明,该膜电极对CAP检测有较好的选择性和灵敏度,CAP检测的线性范围为4.33×10-8~3.09×10-6 mol/L,检出限为2.5×10-8 mol/L。  相似文献   

20.
Conjugated ployfluorene with 2-(2-(2-methoxyethoxy)ethoxy)ethyl groups(EO-PF)is prepared by the palladiumcatalyzed Suzuki coupling reaction.The polymer is purified carefully by a simple chemical procedure.The inductively coupled plasma(ICP)test shows palladium-catalyst in the polymer can be removed by this procedure.The thermal properties,electrochemical properties,UV-Vis absorption properties,photoluminescence properties and electroluminescent properties of the polymer without(EO-PF1)or with purification(EO-PF2)are studied.EO-PF2 shows better PL CIE coordinates in THF solutions as blue light-emitting materials and better photoluminescence stability in thin solid films. Polymer light emitting diodes and electrochemical cells based on EO-PF2 exhibit somewhat improved optoelectronic performance than control devices of EO-PF1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号